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Abstract—Constraint Programming (CP) is a powerful declar-
ative programming paradigm combining inference and search
in order to find solutions to various type of constraint systems.
Dealing with highly disjunctive constraint systems is notoriously
difficult in CP. Apart from trying to solve each disjunct indepen-
dently from each other, there is little hope and effort to succeed
in constructing intermediate results combining the knowledge
originating from several disjuncts. In this paper, we propose
If Then Else (ITE), a lightweight approach for implementing
stratified constructive disjunction and negation on top of an
existing CP solver, namely SICStus Prolog clp(FD). Although
constructive disjunction is known for more than three decades,
it does not have straightforward implementations in most CP
solvers. ITE is a freely available library proposing stratified and
constructive reasoning for various operators, including disjunc-
tion and negation, implication and conditional. Our preliminary
experimental results show that ITE is competitive with existing
approaches that handle disjunctive constraint systems.

Index Terms—Constraint Programming, Constructive Disjunc-
tion, Stratified Reasoning, Implementation.

I. INTRODUCTION

Constraint Programming (CP) is a powerful declarative
programming paradigm where traditional instructions are re-
placed with relations over variables. CP has shown for a long
term its ability to model and solve many hard combinatorial
problems. This is due to the fact, that CP supports several
types of relations between values and constraints, including
arithmetical, numerical, logical, and symbolic constraints, as
well as various computational domains, such as integers, reals,
lists, strings, trees, graphs, etc. By considering a large variety
of real-world problems, spanning from car manufacturing,
configuration design to energy production and hardware and
software engineering, CP is a crucial paradigm for exact
solving of constraint systems, which has been proven in many
practical applications.

However, unlike SAT-solving, CP has traditionally only
considered conjunction of constraints. Even though powerful
reasoning capabilities are available in CP, disjunctions have
to be handled by the user, which has to find ways to
model disjunctions using the available modeling tools and
global constraints. In CP, the constraint system is a set of
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constraints implicitly combined via conjunction. Dealing with
disjunctions in CP has always been perceived as challenging.
This is due to the uneasy trade-off between search and
inference while searching for satisfying assignments. Indeed,
despite the usual exploitation of hypothesis refutation in
the search process, inference has traditionally been mostly
considered for conjunction of constraints. Notable exceptions
include the definition of few global constraints, which
embed disjunctive reasoning, such as cumulative [1] or
element [10]. To illustrate the usual absence of inference
for disjunctive constraints, consider the following request to
SICStus Prolog clp(FD) [4], a state-of-the-art CP solver
over Finite Domains:

Example 1:
Query: (X#=1) #\/ (X#=3) #\/ (X in 6..7)
Answer: X in inf..sup // ’logical or’ in clpfd

In this example, as no information is available on X, the
solver uses only local reasoning for each disjunct and thus
cannot perform any pruning. As a consequence, the domain
of X is left unconstrained. Of course, for this request, an
obvious and stronger answer would be the following:

Example 2:
Q: (X#=1) cd (X#=3) cd (X in 6..7)
A: X in{1}\/{3}\/(6..7) //cd means ’constr. disj.’

Getting this result requires to use some global reasoning
through a constructive disjunction operator, that is an operator
able to construct knowledge from both disjuncts, without
knowing which one will be true. In most CP implementations,
the ’constructive disjunction’ operator is unfortunately
not natively available, as it is considered as too costly to
propagate. Note that, besides the simple example given
above, a complete implementation has to consider much more
complex constraints in the disjuncts such as shown in the
following example.

Example 3:
Q: A,B in 1..10, (A#>1,B#<9)cd(A#>2,A#<10),
(A+7#=<B) cd ( cn(B+7#>A) )



// cn means ’constructive negation.’
A: A in{3}\/(8..10), B in(1..3)\/{10}

Constructive reasoning requires to perform a deep analysis
of each disjunct before any constructive information can be
propagated through the constraint network. Such constructive
knowledge can be useful to solve efficiently many practical
real-world problems originating from planning [6], scheduling
[15], software engineering [5] or configuration. In many
cases, real-world systems are highly configurable and each
configuration can lead to a slightly different constraint system.

Constructive disjunction is not new in CP. Besides
the initial proposition by Van Hentenryck [10], several im-
plementations have been proposed in different CSP solvers
including Oz [22], Gecode [19], SICStus Prolog [2] or Choco4
[17]. Implementation of constructive disjunction propagators
in CP solvers is usually considered straightforward when it
is perceived as an extension of constraint reification [11]. In
that case, it suffices to associate a Boolean variable to any
constraint, representing its truth value, and use Boolean con-
straints to combine the constraints. This approach is available
in Choco4, for example, with its embedded SAT solver. In
SICStus Prolog clp(FD), besides the constraint reification
mechanism, a more sophisticated approach is available through
the smt global constraint [2] which propagates disjunctive
linear information. Reasoning over disjunctions of temporal
constraints has also been extensively considered in CP, with
specialized algorithms [21].

The problem with the reification approach is that it prop-
agates little constructive information. Entailment is usually
poorly deductive as it is limited to local reasoning, that is,
local filtering over the variables of the reified constraint. In
most cases, more constructive knowledge can be propagated
but the implementation of constructive disjunction requires
a good tradeof between inference and search. An interesting
attempt in that direction is given in [16], [20] where interval
reasoning is used to propagate more information through con-
straint refutation. The proposed approach is however limited
to numerical constraint systems and does not easily extend to
finite domains constraints.

In this paper, we propose a lightweight approach to con-
structive disjunction which can be implemented on top of
any existing CP solver, whatever be the level of filtering
consistency considered and the constraint language in usage.
We propose a parametric stratified reasoning to cope with
the inherent combinatorial explosion of disjunctive problems.
Our open-source and open-access implementation on top of
the SICStus Prolog, called If Then Else (ITE)1, makes use
of the global constraint definition mechanism of clp(FD).
We argue that the availability of alternative ways to deal with
disjunctive problems in CP is crucial to its adoption for solving
real-world industrial problems, e.g., test case generation for

1Available at https://github.com/ite4cp/ite

specific domains [8] or generation of equiprobable test data
[9].

The rest of this paper is organized as follows. Section II
introduces the necessary background and notations to under-
stand the rest of the paper. Section III presents constructive
disjunction and negation and discusses of their implementa-
tion. This section also presents the various implementations of
relaxation of entailments. It contains several examples to help
the reader understand the proposed approach. Section IV pro-
poses stratified reasoning to cope with possible combinatorial
explosion. Section V gives our experimental results with ITE,
while Section VI concludes this work and proposes further
work.

II. BACKGROUND

A. Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSP) are materialized by
(X , C) where X = {X1, . . . , Xn} stands for a set of n vari-
ables, each variable Xi taking a value into a finite domain Di

and, C = {C1, . . . , Cm} is a set of m constraints. A constraint
Ck of arity r, is a relation over a subset of r variables from
X which restrains the acceptable tuples for the relation. The
subset of variables involved into the relation is usually known
in advance, but there are cases where the size of the subset is
parameterized by the problem instance. In the former case, the
relations are called primary constraints while they are called
global constraints in the latter. Ck(Xj , . . . , Xj+r) is said to
be satisfied by an assignment of its variables Xj , . . . , Xj+r to
values vj , . . . , vj+r from their domain iff Ck(Xj , . . . , Xj+r)
evaluates to true with this assignment. A CSP is said to be
satisfiable iff there exists at least one full assignment (i.e., an
assignment of all variables in V also called a solution) such
that all constraints in C are satisfied with this assignment.
Otherwise, the CSP is said to be unsatisfiable. Note that, in this
definition, the constraints of C are interpreted as a conjunction
of constraints.

Solving a CSP means to either exhibit a solution or to prove
unsatisfiability. In both cases, local filtering consistencies are
used to approach this question. Among the many filtering
consistencies proposed in the literature, we will focus only
on two well-known, namely hyperarc-consistency and bound-
consistency.

Definition 1: (hyperarc-consistency)
For a given CSP (X , C), a constraint Ck is hyperarc-
consistent if for each of its variable Xi and value
vi ∈ Di there exist values vj , . . . , vi−1, vi+1, . . . , vj+r

in Dj , . . . , Di−1, Di+1, . . . , Dj+r such that Ck(vj , . . . , vj+r)
is satisfied. A CSP is hyperarc-consistent if for each of its
constraints Ck, Ck is hyperarc–consistent.

Filtering a CSP with hyperarc-consistency can be very
demanding in terms of computational resources. That is why
other consistencies, less demanding, have been introduced.
Among them, bound-consistency is a good compromise.



Definition 2: (bound-consistency)
A constraint Ck is bound-consistent if for each
variable Xi and value vi ∈ {min(Di),max(Di)}
there exist values vj , . . . , vi−1, vi+1, . . . , vj+r in
D∗

j , . . . , D
∗
i−1, D

∗
i+1, . . . , D

∗
j+r such that C(vj , . . . , vj+r)

is satisfied. In this definition, D∗
j stands for

min(Dj) . . .max(Dj) (obviously D∗
j ⊇ Dj). A CSP

(X , C) is bound-consistent if for every constraint Ck, Ck is
bound-consistent.

More details on CSP and local filtering consistencies can
be found in [12], [13], [18].

B. Global Constraint Definition

As said above, global constraints are relations over an
unknown subset of variables. Typical examples include the
all_different(X1, . . . , Xn) constraints which constrains
all variables to take different values (here, n is a user-defined
parameter) or the element(I, (X1, . . . , Xn), V ) which con-
strains XI to be equal to V . An important feature of modern
CSP solvers is their ability to let the user define its own global
constraints.

Defining a global constraint requires three elements to be
given by the user:

1) (Interface) An interface has to be defined for the
global constraint. This interface contains a name for
the constraint along with a list of variables, possibly
unbounded ;

2) (Algorithm) Each time the defined global constraint is
considered in the propagation queue of the CSP solver,
a filtering algorithm has to be launched with the goal
to eliminate as much as possible inconsistent values of
variables from their domain ;

3) (Awakening) Guidance to the awakening of the con-
straint in the propagation queue must also be provided. It
is important to decide when to launch the filtering algo-
rithm in order to avoid any misusage of the constraints.
Typical examples of awakening conditions include the
change of boundaries of variable domains involved into
the relation or the assignment of one of its variables.

For example, SICStus Prolog clp(FD)allows the users to
define new global constraints through an interface composed
of two distinct parts:

1) dispatch_global(Constraint, S0, S, Actions)

This predicate tells the solver that the predicate
Constraint is a new global constraint.
Constraint defines the interface of the constraint,
while Actions define what actions to take. These
actions include conditions when global inconsistency
is proved (i.e., failing condition), when constraint
entailment is proved (i.e., success), and partial
satisfaction is obtained through variable binding or
domain reduction. verb+S0, S+ are used to memorize
previous and current states of the variable domains
while applying the filtering algorithm ;

2) fd_global(Constraint, State, Suspensions)

This predicate is used to post an instance of the con-
straint Constraint. Suspensions define the awak-
ening conditions which include, in this implementation,
variable binding, boundaries reduction or domain reduc-
tion. State contains the current state of the variables
domain.

Using this mechanism, it is thus possible to implement var-
ious types of constraints, including those which are used to
combine constraints with logical operators.

C. Syntax of the Constraint Language

The syntax of ITE constraint language is detailed in Fig. 1.
The language contains several operators working on classical
arithmetic constraints. It also introduces logical operators such
as cn,cd,cxd,=>,ite which are typically useful to repre-
sent logical constraints. Note that the language introduces two
version of constructive negation and constructive disjunction
in order to distinguish the versions of these operators which
implement stratified reasoning from the others. Both logical
implication and if then else operators only use stratified rea-
soning as it is more useful (See Sec.IV for more details). This
language is powerful as it allows us to perform various form
of disjunctive reasoning.

III. CONSTRUCTIVE OPERATORS

Implementing meta-constraints such as disjunction,
negation, implication, etc. requires to reason on the truth
value of constraints and their possible (dis-)entailment by the
current status of the CSP [3].

Definition 3: A constraint Ck(Xj , . . . , Xj+r) is entailed by
a CSP (X , C) iff, for any solution vj , . . . , vj+r of (X , C), the
constraint Ck(vj , . . . , vj+r) is satisfied.

Note that, by construction, all constraints of C are entailed
by the CSP (X , C). In the above definition, Ck is not
necessary part of C.

Example 4: If all tuples of D(X1) = {2, 3}, D(X2) =
{2, 3} are solutions of a CSP (X , C) then the constraint
abs(X1 −X2)#=<1 is entailed by (X , C).

Proving constraint entailment or disentailment is as demand-
ing as finding all solutions of a CSP. As solving CSP is
NP hard in the general case [10], relaxations of constraint
entailment have been proposed.

A. Relaxations of Constraint Entailment

Entailment checking in practical settings is based on local
filtering consistencies. Two partial entailment tests have been
introduced in [10]: domain-entailment and interval-entailment
which are based respectively on hyperarc-consistency and
bound-consistency (See Sec.II). Another partial entailment
test can be introduced here based on constraint refutation,
namely Abs-entailment. Abs-entailment is a relaxation of
entailment which exploits the filtering capabilities of the



CtrBody ::= var | true | 1 | false | 0
| var in ConstantRange { Domain constraint }
| ExprArithm { Arithmetical Expression with +,-,x,... }
| CtrBody RelOp CtrBody { Logical constraint }
| CtrBody, CtrBody { Constraint conjunction }
| cn(CtrBody) | cn(CtrBody,Env) { Statified constructive negation }
| CtrBody cd CtrBody | cd(CtrBody, CtrBody,Env) { Statified constructive disjunction }
| CtrBody cxd CtrBody | cxd(CtrBody, CtrBody,Env) { Statified constructive exclusive disjunction }
| CtrBody => CtrBody | =>(CtrBody, CtrBody,Env) { Statified constructive implication }
| ite(CtrBody, CtrBody, CtrBody,Env) { Statified constructive if then else }

RelOp ::= #= | #<> | #< | #=< | #> | #>=

Fig. 1. Syntax of ITE Constraint Language

entire CSP to try to refute the negation of the constraint.
Using more formal presentation, we now describe these three
relaxations of entailment which are available in ITE.

Definition 4: (domain-entailment)
Let (X , C) be a CSP having (D1, . . . , Dn) as domains for
its variables X1 . . . , Xn, then a constraint Ck(Xj , . . . , Xj+r)
is domain-entailed by (X , C) iff, for all domains Di and all
values v ∈ Di, Ck(vj , . . . , vj+i−1, v, vj+i+1, . . . , vj+r) is
satisfied.

Based on this definition, a constraint Ck can be entailed,
but not necessary domain-entailed by a CSP (X , C). On the
contrary, the opposite is true: any constraint Ck which is
domain-entailed is also entailed by (X , C).

Example 5: If X1 ∈ {2, 3, 4}, X2 ∈ {2, 3, 4} and
C = {X1#=<X2} then the constraint X1#=<X2 + 1 is
entailed but not domain-entailed.

In this example, X1#=<X2 + 1 is entailed
because all satisfying tuples of X1#=<X2, namely
{(2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)} are also solutions of
X1#=<X2+1. However, this constraint is not domain-entailed
because there exist pairs in ({2, 3, 4}, {2, 3, 4}) which do not
satisfy X1#=<X2 + 1, e.g., the pair (4, 2).

Domain-entailment is a local property as it requires only to
examine the tuples of Ck with respect to the current domains
of its variables. At the same time, proving domain-entailment
is demanding as it requires to examine all satisfying tuples of
Ck, which can be time-consuming when domains are huge.
Another less-demanding relaxation is thus proposed in some
solver implementations.

Definition 5: (interval-entailment)
A constraint Ck(Xj , . . . , Xj+r) is interval-
entailed by a CSP (X , C) iff, for all domains
Di and all values v in min(Di) . . . max(Di),
Ck(vj , . . . , vj+i−1, v, vj+i+1, . . . , vj+r) is satisfied.

Obviously, if a constraint Ck is interval-entailed by a
CSP (X , C), then Ck is also domain-entailed as Di ⊆
min(Di)..max(Di). But, the opposite is not true. Never-
theless, these two relaxed versions of entailment are quite
similar and both are used in implementations of classical
(non constructive) negation and disjunction. For instance, both
are used in SICStus Prolog clp(FD)for implementing the
reification operator. This operator is used to evaluate the truth
value of any constraint, including some global constraints [2].

B. Abs-entailment

We introduce here another partial entailment test which is
based on constraint refutation :

Definition 6: (abs-entailment)
A constraint Ck is abs-entailed by a CSP (X , C) iff filtering
by hyperarc-consistency or bound-consistency the CSP
(X , C ∧ ¬Ck) yields to an inconsistency.

This definition is operational as it is based on concrete
filtering properties that are available in most CSP solvers.
As hyperarc-consistency and bound-consistency are sound
relaxations of consistency, it is trivial to see that abs-
entailment is a sound relaxation of entailment. Indeed, if
C ∧ ¬Ck is inconsistent then C =⇒ Ck and then Ck is
entailed.
Unlike domain-entailment or interval-entailment, abs-
entailment is not a local property, restricted to the constraint
Ck. It involves all the constraints of the CSP and requires the
computation of ¬Ck. In addition, it requires the restoration
of the computational state after the test of inconsistency
of (X , C ∧ ¬Ck). Nevertheless abs-entailment is powerful
to deduce entailment and prune domains, more powerful
than domain- and/or interval-entailment as shown in our
experiments, given in Sec.V.

C. Constructive Disjunction

Abs-entailment can be used to implement constructive dis-
junction. By using the global constraint definition mechanism
of a CSP solver, it becomes possible to introduce a new
disjunctive constraint, i.e., C1 cd C2, where one test whether



cd(C1, C2) :−
term variables(C1, L1), term variables(C2, L2), %Get variables
ord union(L1,L2,L), add dom(L,DOM), %awake when domains

have changed
clpfd:fd global(cd ctr(C1,C2,L),state,DOM).

clpfd:dispatch global(cd ctr(C1, C2, L),state, state, Actions) :−
cd solve(C1, C2, L, Actions).

% When there is no variable in the query (L == [])
cd solve(C1, C2, [], Actions) :− call(C1), !, Actions = [exit].
cd solve( C1, C2, [], Actions) :− call(C2), !, Actions = [exit].
cd solve( C1, C2, [], Actions) :− !, Actions = [fail].

% if variables in the query (L \== [])
cd solve(C1, C2, L, Actions) :−
\+( (call(C1), assert bounds(L)) ), !, % (C /\ C1)=>fail ?
Actions = [exit, call(user:C2)].

cd solve(C1, C2, L, Actions) :−
\+( (call(C2), assert bounds(L)) ), !, % (C /\ C2)=>fail ?
retract(inb( )),
Actions = [exit, call(user:C1)].

cd solve( C1, C2, L, Actions) :− % Else case
union bounds(L, Actions). % suspend and construct

Fig. 2. An implementation of constructive disjunction in clp(FD)

C1 and C2 are entailed or not. By adding C1 (resp. C2) to the
constraint store and checking whether the resulting constraint
system is inconsistent, one gets an easy abs-entailment test of
¬C1 (resp. ¬C2). Those tests can be performed each time the
global constraint is awakened. Besides, while making these
tests, one can register the domains status of each disjunct,
after the filtering steps. Having filtered both C ∧ C1 and
C ∧ C2 and stored domain information, it becomes possible
to construct unified information for the variable domain of
the constructive disjunction constraint. In order to illustrate
this principle, an implementation of constructive disjunction is
given in Figure 2. For readers who are familiar with Prolog,
the implementation is straightforward. For the other readers,
the interesting part of the implementation lies in the line with
comment %(C /\ C1)=>fail ?. The corresponding Pro-
log code exploits the ’negation-as-failure’ operator of Prolog
to test whether C∧C1 fails or not. By posting C1 and checking
the failure of the resulting computational state (by constraint
propagation), we test if ¬C1 is entailed. If the goal succeeds
then the computation backtracks and undoes what has been
deduced from adding C1.

A typical example of using this implementation is given in
the following example.

Example 6: A,B,C in 1..5
Q: (A-B#=4)cd(B-A#=4), (A-C#=4)cd(C-A#=4)
A: A,B,C in {1}\/{5}

This implementation raises the question of what to do when,
during the inconsistency checks, other such tests have to be

performed. This can happen, for example, in the presence of
other cd constraints. The implementation given in Figure 2
will just recursively consider all such tests. This deep analysis
may lead to a very precise result but, at the same time, will
be computationally expensive. For this reason, we introduce
in this paper stratified reasoning as a way to cope with this
problem. Details are given in Sec.IV, but, let’s examine first
the other logical operators constructed using the very same
principle.

D. Constructive Negation

Typical negation operators in Logic Programming imple-
ments negation-as-failure, which triggers failure when the
negated goal succeeds and conversely. Although very useful
in many contexts, this operator coincides with logical negation
only when the negated goal is grounded, which means that all
its variables are binded. Of course, when negating a constraint,
there are several unbounded variables and then posting the
negation of a constraint becomes problematic. Constructive
negation in Constraint Logic Programming has been proposed
to cope with this issue, using Clarke’s completion process [7].
For CSP, only a few implementations have been considered.
In ITE, we propose an implementation which is closed to
constructive disjunction, by checking the inconsistency of
the negated constraint. Using simple rewriting rules, negated
compound constraints can be transformed into conjunction
or disjunction of negated simpler constraints, as shown in
Figure 3. Interestingly, the constructive negation operation is
implemented using the global constraint interface of SICStus,
so that, fine-grained domain pruning and suspension can be
implemented.

E. Other Operators

Other logical operators based on similar principles can
be implemented. In particular, exclusive disjunction, general
constraint implication operator and conditional are easy to
derive from the implementation of constructive disjunction.
For exclusive disjunction C1 cxd C2, when one disjunct is
shown to be inconsistent (e.g., C1), one can propagate the
negation of this disjunct togather with the other disjunction
(call((cn(C1),C2))), while this is not possible with
non-exclusive disjunction. Note that conditional reasoning,
i.e., if(C) then C1 else C2 can trivially be converted into
an exclusive disjunction operator by using the formulae:
(C ∧ C1) ∨ (¬C ∧ C2). As CSP usually work on finite
domains, the closed world hypothesis guarantees that there
is no answer available where both C and ¬C can be true.
The following example illustrates the usage of ite when
combined with other constraints.

Example 7:
Q:ite(I0#=<16, J2#=J0*I0, J2#=J0, ENV),

J2#>8, J0#=2
A: J0 = 2, I0 in 5..16, J2 in 10..32



cn(C) :−
term variables(C, L), add dom(L, DOM), %Get var, awake on

dom
clpfd:fd global(cn ctr(C,L),state,DOM).

clpfd:dispatch global(cn ctr(C,L),state,state,A) :−
cn solve(C, L, A).

% no variable in the query (eq. negation as failure)
cn solve(true, , Actions) :− !, Actions = [fail].
cn solve(1, , Actions) :− !, Actions = [fail].
cn solve(false, , Actions) :− !, Actions = [exit].
cn solve(0, , Actions) :− !, Actions = [exit].
cn solve(C, [], Actions) :− call(C), !, Actions = [fail].
cn solve( C, [], Actions) :− !, Actions = [exit].

% Negation of simple constraints
cn solve(in(V,R), , Actions):− !, Actions = [exit,V in \ R].
cn solve(X #> Y, , Actions):− !, Actions = [exit, call(X #=< Y).
...
% Negation of constructive operators
cn solve(cn(C), , Actions):− !, Actions = [exit,call(C)].
cn solve(C1 cd C2, , Actions) :− !,

Actions = [exit,call((cn(C1),cn(C2)))].
cn solve((C1,C2), , Actions) :− !,

Actions = [exit, call(cd(cn(C1),cn(C2)))].
cn solve(C1=>C2, , Actions) :− !,
%Not(C1=>C2) <=> C1 /\ Not(C2)

Actionss = [exit, call(cd(C1,cn(C2)))].
cn solve(ite(C1,C2,C3, ENV), , Actions) :− !,
%Not(C1/\C2),Not(C1)/\C3 <=> Not(C1) cd C2, C1 cd Not(C3)

Actions = [exit, call((cn(C1) cd C2, C1 cd cn(C3)))].
...

Fig. 3. Excerpt of constructive negation implementation in clp(FD)

Note that other iteoperators can be used in branches of
the operators, enabling cascade conditionals.

IV. STRATIFIED REASONING

In the previous section, we have proposed implementations
of logical operators without paying attention to the compu-
tational costs of propagating constraints. Even though filter-
ing by hyperarc-consistency and bound-consistency is time-
polynomial in the worst case, the number of inconsistency
checks performed can rapidly explode and leads to some
unwanted combinatorial explosion.

In order to cope with this problem, we propose stratified
reasoning. By setting up a user-defined parameter k to a
positive integer (usually a small value), one can decrease k
by one each time an inconsistency check is performed. When
k reaches the value 0, then the inconsistency check is simply
discarded, avoiding so to perform an uncontrolled and redun-
dant exploration of all disjunctions. A straightforward imple-
mentation of this idea is shown in Figure 4. In this implemen-
tation, the variable ENV captures general information about the
computation, including the value of k. While performing the
inconsistency check (line with %K-1,C/\C1 => fail?), k
is decreased. When k = 0, Actions=[] which corresponds
to the suspension of any reasoning.

cd(C1, C2, ENV) :−
term variables(C1, L1), term variables(C2, L2),
ord union(L1,L2, LI), get reveil(ENV, Reveil),
remove var(LI, ENV, L), add dom(L,DOM),
clpfd:fd global(cd ctr3(C1,C2,L,ENV),s,[max(Reveil)|DOM).

clpfd:dispatch global(cd ctr3(C1,C2,L,ENV),s, s, Actions) :−
cd solve3(C1,C2, L, ENV, Actions).

% no variable in the query
cd solve3(C1, , [], ENV, Actions) :− call(C1), !,

Actions = [exit].
cd solve3( , C2, [], ENV, Actions) :− call(C2), !,

Actions = [exit].
cd solve3( , , [], ENV, Actions) :− !,

Actions = [fail].
cd solve3( , , , ENV, Actions) :−

test k(ENV), !, Actions = []. % Test if K = 0 ?

cd solve3(C1, C2, L, ENV, Actions) :−
\+( (decr k(ENV), call(C1), assert bounds(L)) ), !,
% K−1,C/\C1=>fail?
Actions = [exit, call(C2)].

cd solve3(C1, C2, L, ENV, Actions) :−
\+( (decr k(ENV), call(C2), assert bounds(L)) ), !,
% K−1,C/\C2=>fail?
(retract(inb( )) −> true),
Actions = [exit, call(C1)].

cd solve3( C1, C2, L, ENV, Actions) :−
union bounds(L, Actions). % Construct and Suspend

Fig. 4. An implementation of stratified constructive disjunction in clp(FD)

This way of handling disjunctive reasoning is correct
and does not compromise the final result of CSP solving:
it just reports to the final labeling stage the selection of a
disjunction. Stratified reasoning is a good trade-off between
search and inference, although coupled with a decision to
which aspect is more important. The following example
illustrates the benefice of stratified reasoning. By setting up
different values of the user-defined parameter k, one gets
distinct results with the same constraint system. Note that
when the parameter is less than the number of cdoperators
(in the third case of the example), no deduction is obtained.
We conjecture that k should always be setup to larger value
than the number of disjunctive operators in the formulae but
we do not have any formal proof of this. This conjecture is
evaluated in the experimental evaluation section.

Example 8:
Q:init_env(E,7),cd(cd(X#=0,Y#=4,E),X#=9,E),
cd(cd(Y#=9,Y#=6,E),Y#=7,E)

A: X in{0}\/{9}, Y in(6..7)\/{9}

Q:init_env(E,6),cd(cd(X#=0,Y#=4,E),X#=9,E),
cd(cd(Y#=9,Y#=6,E),Y#=7,E)

A: X in inf..sup, Y in 6..9



Q:init_env(E,3),cd(cd(X#=0,Y#=4,E),X#=9,E),
cd(cd(Y#=9,Y#=6,E),Y#=7,E)

A: X in inf..sup, Y in inf..sup

V. EXPERIMENTAL RESULTS

To confirm the effectiveness of the lightweight approach to
constructive disjunction, we compare our ITE implementation
to the corresponding standard methods contained in SICStus
Prolog clp(FD). We consider 28 representative expressions
containing one or multiple constructive operators, including
examples from [22] and [14]. The benchmark dataset and its
execution scripts are available as part of the ITE distribution2.
All experiments have been conducted with SICStus Prolog
version 4.4.1 running on commodity hardware.

The evaluation goal is to identify scenarios that benefit from
using ITE over the standard methods. For this goal, we com-
pare the stratified and non-stratified constructive negation and
disjunction operators from ITE against the clp(FD)operators
#\ and #\/ as well as against the global constraint smt
[2]. smt is a constraint that potentially allows stronger and
faster propagation of reifiable constraints than the default
propagators of clp(FD), but not necessarily in all cases.

For operators with stratified reasoning, we experiment with
different settings of the parameter k, which is adjusted to
0.9, 1, 1.25, 1.5, and 2 times the number of disjunctive
operators in the formula, rounded to the next smallest integer.
We tested multiplication factors larger than 2, but did not
find better results, so we ignore them here. To evaluate the
performance on the benchmark set, we both analyze the time
to propagate the expressions and the resulting domain sizes.
All expressions in the benchmark set can be resolved to finite
domains, therefore we count propagations that do not return
finite domains as incomplete propagations.

The experimental results, shown in figures 5 and 6, il-
lustrate a trade-off between time for successful propaga-
tion and resulting domain size. Propagation via the built-
in clp(FD)constraints is the quickest approach, although it
does not necessarily propagates every expression to a finite
domain. ITE successfully propagates all expressions in the
benchmark set, although with time longer than clp(FD),
but shorter than smt. The results for the smt constraint are
ambivalent as well. Propagation via smt is slower than native
clp(FD)constraints, but more efficient in domain pruning, as
it is also the case for ITE. However, the time of smt is much
higher than of ITE and by choosing an appropriate value for
k, ITE is more efficient in reducing the domain size.

Conclusively, for the trade-off between propagation time
and resulting domain size, ITE is a beneficial choice, even
without stratified reasoning. With stratified reasoning, choos-
ing a value for k that is close to the number of disjunctive
operators in the formula shows best performance.

2Available at https://github.com/ite4cp/ite

VI. CONCLUSION

In this paper, we have introduced a lightweight implemen-
tation of constructive disjunction and negation in Prolog-based
CSP solvers. This implementation, called ITE, provides a
variety of operators which are useful to explore logical combi-
nation of constraints. By exploiting abs-entailment, a powerful
relaxation of entailment, and a global constraint definition
mechanism, such an implementation is straightforward. As
there is a risk of combinatorial explosion, our implementation
provides stratified deduction, which is a user-parameterized
technique to cope with the problem of disjunctive reasoning.
Stratified deduction requires only to set up a single parameter,
for which we provide a selection guideline.

Our experimental results show that ITE is competitive with
available tools to deal with disjunctive reasoning, namely
domain- and interval- entailment and the smt global constraint.
As future work, we plan 1) to propose to automatically
adjust the value of k for stratified reasoning through heuristic
reasoning and 2) to explore the capability to infer more
symbolic information from disjunctions than just pure domain
information. The later proposition would require to propagate
not only domains, but also deduced variable relations. This
is a challenging problem as there does not exist any general
recipe to perform the union of symbolic information in CSP
solving.
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