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Abstract Maximal covering location problems have effi-
ciently been solved using evolutionary computation. The
multi-stage placement of charging stations for electric cars is
an instance of this problem which is addressed in this study.
It is particularly challenging, because a final solution is con-
structed in multiple steps, stations cannot be relocated easily
and intermediate solutions should be optimal with respect
to certain objectives. This paper is an extended version of
work published in Spieker et al. (Innovations in intelligent
systems and applications (INISTA), 2015 international sym-
posium on. IEEE, pp 1–7, 2015). In this work, it was shown
that through problem decomposition, an incremental genetic
algorithm benefits from having multiple intermediate stages.
On the other hand, a decremental strategy does not profit from
reduced computational complexity. We extend our previous
work by including multi-objective optimization of multi-
stage charging station placement, allowing us to not only
optimize toward (weighted) demand location coverage, but
also to include a second objective, taking into account traffic
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density. It is shown that the reachable part of the full Pareto
front at each stage is bound by the solution that was cho-
sen from the respective previous front. By careful choice of
the selection strategy, a particular focus can be set. This can
be exploited to comply with concrete implementation goals
and to adjust the evolved strategy to both static and dynamic
changes in requirements.

Keywords Genetic algorithm · Optimization · Maximal
covering location problem · Multi-stage · Single-objective ·
Multi-objective · Electric mobility

1 Introduction

Maximal covering location problems (MCLP) arise when
resources need to be distributed around certain fixed loca-
tions. Recently the problem of charging station placement
for electric vehicles has become increasingly important since
European governments decided to support a shift toward
non-fossil fuel-based transportation (BMVI 2011). A dis-
tinct feature of this task is its temporal dimension. Due
to economic reasons, charging station infrastructure can-
not be deployed in a single step. First stages have to
encourage the commuters transition while in later stages
economic factors will dominate. In both cases, coverage
plays a key role. To complicate matters, multiple factors
can be taken into account to define the objective func-
tion.

In this paper, we present an evolutionary approach to
solve this multi-stage multi-objective MCLP. A target area
within the region of Bonn and Rhein-Sieg-Kreis serves as
an example (cf. Fig. 1). This work is an extension of a
first study (Spieker et al. 2015), which was supported by
the respective municipalities and local energy suppliers.
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Local politics in the meantime has decided to start build-
ing infrastructure based on recommendations derived from
that study.

The multi-stage maximal covering location problem
(MCLP) (Church and ReVelle 1974), in which a fixed num-
ber of demand locations need to be optimally covered by a
fixed number of supply stations over a fixed number of stages,
is an NP-hard problem (Church et al. 1996). Dynamic pro-
gramming or branch-and-bound algorithms are commonly
used (Berman and Krass 2002) to solve it. However, those
exact approaches suffer from exponential complexity. In the
presented example case, the exact solution thus becomes
intractable, since the number of demand locations (points of
interest) amounts to 5062 and up to 935 charging locations
need to be placed. The latter number is derived fromprojected
figures for the year 2020 on the necessary total number of
charging stations (Elektromobilität 2012), total car stock in
Germany (Kraftfahrt-Bundesamt 2015) and total car stock in
the Bonn-Rhein-Sieg region (MBWSV-NRW 2013).

The target area is subdivided into so-called traffic cells
which underlie municipal traffic planning (cf. Fig. 1).
Figure 1 also shows points of interest (POI) such as airports,
public transportation transitions, museums and parking lots
that were selected based on an expected length of stay, allow-
ing batteries to be charged up to at least 80%. For the sake
of clarity, results will be presented only for a subregion of
the target area, depicted in Fig. 1. The subregion consists of
multiple municipal cores as well as large low-density, rural
areas.

We use genetic algorithms (GA) to approximate near-
optimal solutions. Two objectives will be taken into account
to determine a solution’s fitness, POI coverage and coverage

Fig. 1 Target area within the original region with POI. Lighter colors
indicate a higher demand. POI are shown as points and the traffic flow
is shown per traffic cell. Lighter colors indicate higher traffic volume.
The area includes high-density city regions (Bonn city, upper left of
reduced area) as well as rural areas (northeast and southwest)

of traffic flow. Using the NSGA-II algorithm, both objec-
tives will be maximized simultaneously resulting in a Pareto
front of non-dominated solutions. Results will be compared
to a single-objective case using weighted POI coverage as a
single-objective.

Multi-stage MCLP can be optimized in two ways. Either
every stage is optimized sequentially, taking the result of the
last stage as a starting point for the optimization of the next.
Alternatively, the final stage can be optimized and then grad-
ually reduced toward the first stage by removing charging
stations from the previous solution. We examine the final as
well as intermediate results and compare the results of both
strategies to independently calculated solutions.

In the next section, we provide more details about require-
ments that need to be fulfilled.

2 Problem description

The target of the optimization of this multi-objective, multi-
stage MCLP, placing charging stations in a mixed urban-
rural region, is a maximization of POI coverage to increase
public visibility as well as covering as many high-density
traffic routes as possible, encouraging the usage of charging
stations.

Economic costs cannot be taken into account due to data
unavailability, and this project does not aim to produce exact
placement locations but much rather approximate ideal loca-
tions.We can thus produce an ideal distribution which serves
as a basis for further planning steps.

Only public POI locations are taken into consideration so
onlyMode II (up to22kWBMVI2014) charging stationswill
be placed, as slower charging stations are not suitable for pub-
lic locations, where parking space and time are scarce. Mode
III stations are unavailable due to power network capacity
constraints.

In the single-objective use case, only the maximal cover-
age of POI, taking into account the weighted demand based
on the German government’s projections, has been taken
into account. Instead of traffic density, five demand cate-
gories with attached weights (1–5) are defined, reweighing
the importance of every POI, based on expected traffic den-
sity (Infas Institut für angewandte Sozialwissenschaft Gmbh
2009).

As currently neither demand nor necessary resources are
available to deploy all planned charging stations at once, a
successive, multi-stage deployment from 2016 to 2020 is
planned, with a final total of 935 charging stations. This
staggered deployment needs to be reflected in the placement
process of the charging stations.More important regions need
to be covered earlier, which is reflected in POI importance
weights. Maximizing the coverage is an important goal for
all stages of the roll out.
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An independent placement strategy consists of indepen-
dently optimizing every stage, not taking into account the
placement of the previous or next stage.An incremental strat-
egy is defined to be stagewise, with every stage taking the
solution of the previous as a fixed part of the solution. The
placement of another batch of charging stations added to this
fixed solution then is optimized. Vice versa, a decremental
placement strategy starts with an optimized final solution. A
subset of the final placements is then removed to arrive at the
solution for the former stage.

As the accompanying cost for station relocation is not pos-
sible due to the aforementioned lack of data, the use of an
independent placement strategy is prohibited, as an interme-
diate solution set is not an actual subset of the next stage’s
solution. Each successive stage takes the solution from the
former stage as fixed.

3 Related work

Church andReVelle (1974) first introduced theMCLP,which
has since been broadly discussed in the literature. A recent
review of the problem and available approaches can be found
in Berman et al. (2010) and Farahani et al. (2012).

GA, a class of optimization algorithms inspired by natural
and evolutionary concepts, were first presented by Holland
(1975). Themain idea is to gradually improve a set of initially
random solutions (a population consisting of several individ-
uals) measured by a performance index. In each generation,
individuals are selected as parents to create new solutions,
children, via recombination andmutation.Avalue is assigned
to each child, representing how well the solution solves the
problem, according to a predetermined objective or fitness
function. This fitness value is then taken into account to
derive a new generation, consisting of individuals with an
average fitness that is often higher than the last.

ClassicalGAs typically optimize a solutionwith respect to
a single-objective, but for some applications it is necessary
to simultaneously optimize multiple conflicting objectives.
To efficiently handle multi-objective optimization problems,
multi-objective genetic algorithms (MOGA) have been pro-
posed (see Deb and Wiley 2006), such as NSGA-II (Deb
et al. 2002), which we will employ in the presented multi-
objective scenarios. These algorithms group individuals into
Pareto fronts according to their dominance in a fitness or
objective space. An individual is said to dominate another
individual if it has better fitness on at least one objective
and the same or better fitness on all other objectives. The
set of individuals which are non-dominated form the first
Pareto front of the population are the most fit according to
the objectives.

GAs have been used to optimize the placement of charging
stations by other authors. Lim andKuby (2010) applied a GA
for the flow-refueling locationmodel,which optimizes place-
ment tominimize traffic flow interruption and give individual
drivers the possibility to charge on route when needed—in
contrast to the MCLP used in this paper, which tries to opti-
mize the availability of charging opportunities for parked
vehicles. Hess et al. (2012) combined aGAwith a traffic sim-
ulator to evaluate each individual according to a trafficmodel,
targeting traffic flow optimization. A cost-focused approach
regarding the construction costs of the charging infrastruc-
ture was described by Jin et al. (2013). This approach does
not apply to our concrete problem, as is mentioned in Sect. 2.

The application of multi-objective GAs to variations of
covering problems, such as MCLP, has been published by
other authors as well. For example, Attea et al. (2014)
recently described the applicability of NSGA-II for the cov-
erage of mobile networks and Badri et al. (1998) made use
of a GA to optimize the location of fire stations based on the
travel times and distances from the stations to the areas of
possible demand.

The concrete application of GAs to optimize MCLP was
discussed by Zarandi et al. (2011) in which they presented
a customized GA for a large-scale MCLP with 2500 nodes.
This approach was based on a discretized problem and does
not work in an incremental way.

An important aspect for charging station placement plan-
ning is multi-stage optimization, where the final placement
plan is reached over intermediate stages. This is a common
problem decomposition method in applications where it is
unreasonable or not possible to realize the optimal solution
immediately. Reininger et al. (1999) discussed this problem
in the context of planning mobile radio networks on discrete
sets of fixed possible locations. Their solution was based
on GAs, and they evaluated various approaches to reach
the maximum stage. Their solutions did, however, allow sta-
tions to be moved in intermediate stages, an option explicitly
prohibited in our problem. Furthermore, Canel et al. (2001)
present a branch-and-bound algorithm for a dynamic multi-
stage facility location problem and Albareda-Sambola et al.
(2009) further formulate it as a multi-period incremental
service facility location problem (MISFLP) for which they
present a Lagrangian formula. Chung (2012) analyzed a
multi-period planning problemof charging station placement
for Korean expressways, also based on a flow-refueling loca-
tion model. The three latter approaches can be excluded by
us, as we solve a static problem and do not take into account
queue times or station blocking.

In the following section, we will present different strate-
gies that cater to the explicit multi-stage continuous and
multi-objective character of the placement strategy at hand.
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4 Methods

Successive multi-stage planning yields a set of charging sta-
tion placements for each stage, where later stages include
all charging stations of earlier, smaller stages. This is either
achievable by planning forward from smaller to larger stages
or backward from larger to smaller ones. These two strate-
gies, which were used in the previous study as well (Spieker
et al. 2015) are called incremental, respectively, decremental.
They, as well as a third strategy, which is used for compari-
son, are summarized in the following.

4.1 Incremental strategy

An incremental strategy to successive charging station place-
ment is to first optimize for a smaller stage and then add
additional charging stations for each subsequent stage. All
formerly placed charging stations are fixed and part of sub-
sequent solutions.

This strategy works in chronological order and first places
charging stations, which would also be built first, while
giving latter stages freedom to find uncovered, but impor-
tant places for charging stations. At each stage also a small
number of additional charging stations can and has to be
optimized, resulting in a problem decomposition effect. Nev-
ertheless, choices at an early stage are fixed and can also keep
solutions stuck at local optima.

4.2 Decremental strategy

On the contrary, a decremental strategy starts from an opti-
mized larger stage and places only the most important
charging stations at each preceding stage.Afterward, it works
backwards and places at each preceding stage only the most
important stations.

An optimized solution at a final stage ensures good cover-
age at the end of the charging station placement process,
because it can freely optimize without constraints. Each
stage’s solution restricts possible locations for charging sta-
tions at smaller stages, as it has only a discrete set of possible
locations available.

From a computational perspective, this allows to switch
from continuous placements to a combinatorial problem of
discrete placement possibilities.

4.3 Independent strategy

As a third strategy, each stage is calculated independently
of former or latter stages. In an practical realization, this
would require to move existing charging stations in subse-
quent stages, which is not allowed by problem constraints.

Because it has no restrictions on possible placements, it
can evolve freely and is used for comparison, as it is unlikely

that all optimal solutions are subsets of former or latter opti-
mal solutions.

4.4 Optimization goals

Twodifferent optimizationobjectives are considered through-
out all experiments. The first objective is to cover amaximum
number of POI, where each POI has a certain demand weight
attributed.

The second objective is to place charging stations close to
points of high traffic, increasing visibility and usage. Traffic
flow figures (one static value per traffic cell, see Fig. 1) pro-
vide information about the importance of each prospective
charging station placement for the actual traffic.

POI only need to be covered by one charging station.Mul-
tiple coverage is neither necessary nor restricted, but does
not count toward the optimization goal, both for POI and
for traffic demand. Nevertheless, in future planning steps it
is advisable to consider whether the demand at a specific
placement requires more than one charging station, too. This
aspect is not part of this study.

It follows that charging stations should be placed at highly
frequented and highly weighted POI.

To define the problem more precisely, the following opti-
mization objectives are used. The notations are similar to the
ones used in (Farahani et al. 2012, p. 375):

POI Coverage: Maximize
L∑

i=1

civi

Traffic Coverage: Maximize
N∑

k=1

M∑

j=1

a jkw j

where i is the POI index, j traffic zone index, k charging
station index, ci binary variable is 1 if POI i is covered, else
0, vi demand weight of POI i , a jk binary variable indicating
if charging station k is placed in j or not,w j traffic weight of
traffic zone j, L number of POI, M number of traffic zones,
and, N number of charging stations to be placed.

4.5 Selection of base solutions

In a successive placement strategy, a subsequent or preceding
stage is based upon an former solution, except for the first and
final stage, respectively. This selection is simple for single-
objective optimization, where the fittest individual is chosen
as a base solution.

However, in multi-objective optimization a Pareto set of
non-dominated solutions is calculated, which can contain
more than one solution. In this case, a selection strategy has
to be defined that is used to decide which solution becomes
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Table 1
Incremental/independent
genotype

Station # 1 2 3

x 3.6 0.5 8.6

y 4.2 11.1 5.5

the base solution. Two strategies to select the solution which
serves as a base for the next step are considered.

In a first selection strategy, a base solution could be formed
by those stations which are most frequently placed through-
out the final Pareto front. However, during experimentation
this resulted in worse solutions, because of interactions
between overlapping charging stations when combining
genes from each solution.

A second possibility is to choose one specific solution
from the set of solutions based on a heuristic. This allows us
to guide the development overmultiple stages.Wecan choose
a solution according to the Pareto principle with respect to
POI. For example, from the best 80% w.r.t. POI coverage,
take the solution that has the highest traffic coverage. It is
possible to change the criterion over time, if it is favored to
have a more traffic-focused development in the earlier stages
and than shift focus to a POI-centered optimization in later
stages. In the experiments presented in Sect. 5.2, two selec-
tion heuristics are presented and applied.

4.6 Parametrization

Both the incremental and decremental strategies will be eval-
uated in single- and multi-objective optimization scenarios.
Single-objective optimization is included to show general
feasibility of successive placement by the incremental and
decremental strategies.

4.6.1 Single-objective optimization

The single-objective case has a best performing, near-optimal
solution after each stage. This solution is taken as the base
solution for the next successive stage. Therefore, no addi-
tional selection strategy for subsequent stages is necessary,
which makes it simpler to discuss differences in the afore-
mentioned strategies. A weighted POI coverage is used as a
fitness metric.

A standard genetic algorithm is applied, where each indi-
vidual’s representation and recombination operators depend
on the used strategy.

When using an incremental strategy, each charging station
is represented by its x/y coordinates (see Table 1), which are
continuous and constrained by the target area’s boundaries.

Individuals are recombined via fitness-weighted uniform
crossover. When mutating, a charging station is randomly
moved in the target area with distances drawn from a
Gaussian distribution. The mutation distance has a standard

Table 2 Decremental genotype: four of seven charging stations are
placed

Station # 1 2 3 4 5 6 7

Active 1 0 1 1 0 0 1

Table 3 Discrete genotype: seven charging stations are placed at fixed
POI locations

Station # 1 2 3 4 5 6 7

POI ID 1015 10 17 800 30 120 470

deviation of 3500m, which was chosen experimentally. The
overall target area has a range of approximately 25km in each
direction.

For the decremental strategy, possible placement locations
are given by the larger base solution. Each individual is there-
fore described by a binary vector (see Table 2), indicating
whether a station is placed.

GA parameters were chosen identically as for the incre-
mental strategy, except for mutation parameters due to the
different representation. Mutation distance was changed to
1 station (i.e., flipping 1 bit), and mutation probability was
reduced to 10%. Due to the discrete solution space, it is pos-
sible to calculate the covered POI of each possible placement
upfront and store them in a lookup table. The actual fitness
evaluation can then be reduced to simple matrix operations,
which are computationally faster.

4.6.2 Multi-objective optimization

Multi-objective optimization extends the single-objective
optimization and considers both traffic and POI coverage as
separate objectives. The selection strategy for base solutions
of each stage depends on the actual scenario.

Computation time prohibited using continuous place-
ments. Stations were therefore only placed on POI locations
(see Table 3), turning the problem into a discrete MCLP.
Pareto fronts were computed using the NSGA-II algo-
rithm (Deb et al. 2002). Parameters in the incremental and
decremental strategies are consistent with those of the single-
objective, decremental case. Mutation consists of randomly
moving one charging station to a random POI.

An overview of all parameters used is presented in Table 4.
They were experimentally chosen for the representative tar-
get region used in the evaluation.

5 Evaluation

At first, single-objective scenarios are discussed to under-
stand effects of successive multi-stage evolution in simpler
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Table 4 Genetic algorithm
parameters

Parameter Incremental/independent Decremental/multi-objective

Population size 90 90

Selection Tournament Tournament

Selection pressure 2 2

Crossover probability 95% 95%

Mutation probability 25% 10%

Mutation distance 3500m 1 station

Prob. of new individual 5% 5%

Bold values indicate differences between both columns

Table 5 Scenario overview
Scenario Strategy Objective (s) Initial stage Intermediate stages Final stage

One-step Incremental POI 50 ./. 100

Decremental POI 100 ./. 50

Two-step Incremental POI 50 ./. 75

Decremental POI 100 ./. 75

Incremental POI+ traffic 50 ./. 75

Decremental POI+ traffic 100 ./. 75

Multi-stage Incremental POI 20 40, 60, 80 100

Decremental POI 100 80, 60, 40 20

Independent POI 20 40, 60, 80 100

Incremental POI+ traffic 20 40, 60, 80 100

Decremental POI+ traffic 100 80, 60, 40 20

cases. Afterward, these results are extended by multi-
objective optimization results. All scenarios are listed in
Table 5. Initial stages are always calculated via the indepen-
dent strategywithout any restrictions on possible placements.

One main aspect is to see how results from the presented
multi-stage strategies differ, measured by the fitness in each
stage as well as of the final solution, and later on how the
selection criteria in the multi-objective scenarios influence
the evolution of successive stages.

Evaluation is based on a representative part of the actual
target area and its characteristics, having both high and low
POI density areas (see Fig. 1), instead of using synthetic
examples. Scenarios are derived from the original project, but
proportionally reduced to fit to the reduced target area, which
leads to a final stage of 100 charging stations, whereas orig-
inally up to 935 charging stations were placed. The sum of
the importance weight values of all 1230 POI in the reduced
target area is 1678. For comparability and statistical rele-
vance, all results are averaged over 32 runs. Each run was
stopped after 1000 generations, as they by then all reach
98% of the maximum fitness after 4000 generations (see
Fig. 2).

A discussion of results consists of comparing absolute
fitness number, spatial distribution of placements in the target
area and the composition of overall fitness.

Fig. 2 First 4000 steps of independent runs for different numbers of
placements. All leading to an approximate convergence time of 1000
generations, reaching 98% of the respective final fitness values after
4000 runs

5.1 Single-objective placements

5.1.1 One-step comparison

This scenario shows the basic behavior of a single step
per successive strategy and how the subsequent results are
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Fig. 3 Fitness values based on a single step, allowing the compari-
son of both strategies with an independent calculation. A 50 placement
increment and decrement are shown. Starting conditions for both strate-
gies are determinedby independent solutions for 50 and100placements,
respectively

restricted by it. It is shownhow the incremental and the decre-
mental strategies differ, because of problem decomposition.
The results of both successive calculations are compared to
independently calculated solutions for each stage.

Figure 3 shows significantly better result for the incremen-
tal than for the independent strategy. This might be explained
by the fact that the latter optimizes all 100 placements at once
and is therefore more prone to run into a local optimum.
Furthermore, independent solutions are generally better than
decremental solutions, because the upper bound for the latter
is set by the precedingly chosen solution. The upper bound
will only be reached in certain unique cases, with equally dis-
tributed POI, and in general, decrementalwill performworse.

5.1.2 Two-step comparison

Figure 4 shows a direct comparison of the incremental and
decremental strategies, where the actual problem is sim-
plified to a single intermediate target stage of 75 charging
stations, with fixed initial solutions for both algorithms. The
incremental strategy’s fixed solution, marked with + in the
lower left corner, was calculated by using the independent
strategy for 50 charging stations. The initial solution for the
decremental strategy, marked with − in the upper right cor-
ner, was calculated for 100 charging stations also by the
independent strategy.

As both strategies successively move to the same num-
ber of charging stations placed, in an optimal solution those
solutions should not differ greatly. However, Fig. 4 shows
that the chosen strategy and its properties limit the evolution
of successive stages.

Fig. 4 Comparison of fitness values based on a single target stage
with 75 placements, allowing a direct comparison with similar starting
conditions, which are determined by the independent strategy

Fig. 5 Density histogram comparison between incremental and decre-
mental strategy at intermediate stage with 75 charging stations

At the intermediate stage, the incremental strategy reached
a significantly higher fitness than the decremental strategy.
Both results differ in their variance. The incremental strat-
egy, which generally has more freedom in the solution space,
shows a smaller variance than the decremental strategy. This
indicates that the incremental strategy’s runs tend to find a
certain optimum for 75 placements, whereas the subset of
the decremental strategy’s initial solution includes a certain
range of possible placements leading to similar, but varying
fitness values.

Figure 5 shows the density distribution for both strate-
gies. This distribution categorizes the charging stations with
respect to their fitness share. We can conclude that the
incremental strategy is generally better at avoiding placing
charging stations that have hardly any effect on the total fit-
ness. This can be derived from the fact that the amount of
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Fig. 6 Comparison of fitness values per strategy over five stages

charging stations in the leftmost bin is significantly lower for
the incremental strategy. A significant number of placements
is moved from the first to the second bin. On the other hand,
the decremental strategy is confined to amere subselection of
placements from the final stage. Which strategy was chosen
does not seem to have any visible influence on the solutions’
variance,which only holds true for large numbers of charging
stations.

5.1.3 Multi-stage comparison

Besides of the comparison of single steps, the development of
results for a number of subsequent stages is investigated. The
scenario for this evaluation is based on a successive place-
ment strategy with five stages and a final number of 100
placements in the target area (see Table 5).

Figure 6 displays the average fitness values for each
strategy at each stage. It should be noted that for the first
stages, i.e., 20 placements for the incremental and 100 place-
ments for the decremental strategy, the fitness values of the
successive strategies are equal to the independent strategy,
because the successive strategies start based on the indepen-
dent results of their initial stages. The results show that the
incremental strategy can utilize problem decomposition as it
has to place only a small number of 20 charging stations on
top of the existing solution. This seems to work well regard-
ing the dynamics of the GA and results in the best overall
fitness at each stage.

On the other hand, the decremental strategy is constrained
by the fixed set of options, which hinder the dynamics of the
GA, resulting in less fit results at all stages. The difference
to the incremental results is especially visible between the
incremental results at stage 60 and the decremental results
at stage 80, where the placement results of more stations are
less optimal than the smaller placement.

For the smallest stage of 20 placements, it can be observed
that the fitness values of the different solutions are very sim-
ilar, even for the reduced decremental strategy, indicating a
local optimum found by both GA implementations.

Further differences between the strategies and their suc-
cessive placement behavior are depicted by the fitness
differences between each subsequent stage. These differ-
ences get smaller for each step of the incremental strategy
as the most valuable points are covered at an early stage and
later stages further optimize the result in small additional
steps. This is opposed to the decremental strategy, where
the fitness difference per stage is neither steadily increasing
nor decreasing, but changing. From 100 to 80 placements
and from 40 to 20 placements, the fitness difference for the
decremental results is significantly larger than between the
intermediate stages, because of the way the initial solution
was built. The independent strategy directly places all 100
charging stations for the initial stage. That can lead to a state
where the complete construction is necessary for the fitness
result and is less robust compared to the incremental strategy,
which is based on partial high fitness building blocks.

Themulti-stage comparison shows the ability of the incre-
mental strategy to better adapt to the problem by gradual
improvement as well as producing stages containing high fit-
ness placements in earlier stages, fulfilling the requirement
of placing important charging stations earlier on.

In Fig. 7, it is shown for one exemplary run how the dif-
ferent strategies affect the distribution of charging stations.
The visualization directly represents which charging station
is placed at which stage. For the incremental and decremen-
tal strategies (see Fig. 7a, b), this corresponds to the stage
when a charging station is added or removed. The longer
a station exists, i.e., the earlier it is placed or the later it is
removed, the brighter its color. For the independent strategy,
all placed charging stations are displayed at all stages. It can
be seen that it mostly covers the same, high valuable regions
and then further spreads out over the target region to place
the additional stations at larger stages.

Variation in placements of charging stations in rural areas
is quite high, but the main placement clusters are similar
and according to the POI density distribution (see Fig. 1).
However, the independent placements (see Fig. 7c) also show
a similar distribution pattern, where some regions are always
covered, regardless of the number of placements, which gives
the impression of the region to be an important part of a high
fitness solution.

5.2 Multi-objective placements

Former experiments showed basic effects for a single-
objective, multi-stage evolution. In practical applications,
multiple factors than only POI influence decisions on charg-
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(a) (b) (c)

Fig. 7 Exemplary actual charging station placements; the colors depict
at which stage a charging station is added or removed, except for the
independent where at each stage all charging stations are shown. For the

independent placements, the color shows at which stage a charging sta-
tion was placed. a Incremental placements, b decremental placements,
c independent placements (color figure online)

ing station placement. Therefore, further scenarios in a
multi-objective problem space are introduced.

Instead of focusing on the single-objective of POI cov-
erage, traffic flow coverage is added as a separate second
objective. Maximizing traffic flow coverage guides the algo-
rithm to positions where there is both a high POI demand
and a high traffic, making the overall solution more accurate
to actual needs.

5.2.1 Spatial distribution of charging stations

In the following, it is described how spatial distribution of
charging stations differs between single-objective and multi-
objective problem instances in general, without considering
multiple stages. Each subfigure of Fig. 8 shows how often a
charging station placement was present in the final solution
of 30 runs. For single-objective runs, the final solution is one
solution of 100 placements, and for multi-objective runs it
is a Pareto front of non-dominated solutions, each with 100
placements. The colors indicate the percentage of final solu-
tions in which a charging stationwas placed at a specific POI.

With the POI objective only (see Fig. 8a), the algorithm
frequently places charging stations in the urban region of
Bonn City, which is situated in the center north part of the
region. However, it does not always focus on the same POI,
as the highest repetitive occurrence of a POI in the solutions
is around 30%. This can be explained by both the cover-
age radius of a POI and the area’s dense POI distribution.
Due to this, most charging stations cover multiple POI, thus
increasing the fitness by more than a single POI’s fitness.
This introduces higher solution variance—multiple different
solutions can cover the same amount of POIs, whereas the
sparsely distributed POI in the rural area do not show the
same effect. Generally, the solution achieves a good spatial
distribution of charging stations in the whole target area and
focuses on some important areas rather than directly on spe-
cific important POI.

The solutions that consider the traffic objective (see
Fig. 8b), on the other hand, reflect the traffic structure of
the target area (see Fig. 1). Up to 80% of placements occur
in the high traffic area of Bonn City. Accordingly, rural areas
with little traffic and population are neglected (middle left
area).

Multi-objective solutions reflect both single-objective
results as shown in Fig. 8c. As this figure shows the place-
ment frequency over all fronts of 30 runs, it depicts the evenly
spread diversity of the solutions, also visible in Fig. 9. In
conclusion, the objectives do not contradict each other and
allow a smooth transition between the two extreme, single-
objective solutions.

5.2.2 Successive placements

Subsequently, the next step is to examine how a multi-
objective approach is applicable in the formerly discussed
multi-stage optimization process. As the multi-objective
optimization does not provide one single solution, but instead
a set of solutions, it raises the question, which current solu-
tion should serve as a base for the next optimization step
(see Sect. 4.5). It will be shown how the selection criterion
plays a crucial role, as it restricts the set of feasible solu-
tions.

In the following two-step comparison, the solution that
maximizes POI coverage is chosen from the top 90% w.r.t
traffic coverage. In the multi-step comparison, the criterion
was shifted from a more traffic-centered choice in the first
stage toward a more POI-centered one in the end. This is
motivated by the need to build only few stations in the
beginning covering as much traffic as possible rather than
providing a charging opportunity at every interesting place.
This strategy is implemented by choosing the best solution
(w.r.t. POI) from the top 20, 40, 60 and 80% in the incre-
mental case and in reverse order in the decremental case.
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(a)

(b)

(c)

Fig. 8 Actual charging station placements; the colors depict how fre-
quent a specificplacementwaspresent in the solutions over 30 runs.Map
data © OpenStreetMap.org contributors. a POI, b traffic, c POI+ traffic

Fig. 9 Cumulative Pareto fronts of 30 runs with 100 placements; the
dashed lines show the maximum fitness found in evaluation runs

Fig. 10 Exemplary Pareto fronts for incremental and decremental
runs. Both successive Pareto fronts are limited by the formerly selected
solution and cannot reach the same spread and diversity

5.2.3 Two-step comparison

In a first evaluation, the two-step comparison (see Sect. 5.1.2)
is repeated for the multi-objective algorithm. Only one
instead of 30 runs was considered in the evaluation to show
the basic applicability rather than to evaluate the actual
performance. Both strategies, incremental and decremental,
calculate an initial stage and one successive stage. The incre-
mental strategy extends 50–75 stations, and the decremental
strategy reduces 100–75 stations. The resulting Pareto fronts
are shown in Fig. 10.

In the initial stages, both Pareto fronts are similar as they
are wide spread and diverse, but after one successive step a
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Fig. 11 Exemplary Pareto fronts over five stages. Especially the suc-
cessive fronts of the incremental strategy are influenced by the selected
individual of the former stage, as its fitness values form lower bounds
on the new Pareto front in the following stage

different behavior results. Both Pareto fronts are less wide
and, as there are fewer placements, have a lower fitness on
both objectives. Because the chosen solutions are focused on
a good POI fitness, the successive solutions are not able to
evolve to high traffic fitness. In the incremental case, a lower
bound for the exploration of solutions with high traffic fitness
results from the chosen solution of the initial stage.

Nevertheless, the incremental case still evolves into better
solutions as it has more freedom to place additional charging
stations, whereas for the decremental solutions only a small
set of possible placements exist.

5.2.4 Multi-stage comparison

In this comparison, not only one, but four successive steps
are evolved to analyze effects over a longer period. Initially,
20 and 100 placements, respectively, are calculated indepen-
dently to provide base solutions for later stages. The selection
priority shifts from the traffic objective in stages with fewer
placements to the POI objective in stages with more place-
ments. Figure 11 shows the results of the comparison for an
exemplary run.

Again, the selected base solution has a strong influence
on the further stages of the incremental strategy. Over the
whole multi-stage process, this effect continues and leads to
an overall result similar to that seen in the single-objective
comparison (see Sect. 5.1.3). The incremental strategy can
evolve to a better solution than the initial decremental solu-
tion because it has an optimized base solution and only small
optimization steps.

For the Pareto fronts of the decremental strategy, the suc-
cessive evolution leads to a decreasing variety on the traffic

objective with many solutions of similar traffic but different
POI fitness.

By adjusting the selection on early stages, the evolution-
ary process can be guided into certain fitness regions and
therefore adapt the set of available solutions in the end to the
real-world needs of the problem, as will be shown in the next
section.

5.2.5 Influence of selection criterion

The selection criterion influences the possible solutions of
consecutive stages.

The selected solution builds a lower bound (in the incre-
mental case) and an upper bound (in the decremental case),
for the target space region in which the algorithm will search
for the next stage. It therefore limits the expansion of the
Pareto front. How the selection criterion influences the devel-
opment of the Pareto front in the next stage is shown in
Fig. 12. In Fig. 12a in the incremental case, the individual
which has lowest fitness for objective X, but highest fitness
for objectiveY, is selectedwithin the Pareto front. Thismeans
that all individuals on the next stagewill have at least the same
fitness values, which is satisfied by the complete exemplary
next Pareto front. In this case, the complete next front can
be reached. The same applies for the selection in the decre-
mental case, if an individual with high X fitness and low Y
fitness is chosen. In this case, an upper bound is set for the
next solutions.

Two examples of how the selection can hinder the explo-
ration of the whole next Pareto front are depicted in Fig. 12b.
In the decremental case, the right part of the Pareto front,
with solutions of higher values for objective X, is not reach-
able. Notably, the reachable solutions have a lower fitness on
all objectives—there is no chance to improve on the lower
level. In the incremental case, on the other hand, the left part
is unreachable, but improvement on the objective X is possi-
ble.

Therefore, the choice of a strategy and selection criterion
for multi-objective successive evolution can already limit the
reachable target space. The characteristics of this limitation
depend on the chosen strategy, incremental or decremental,
the selection criterion, fixed position on the Pareto front or
moving or totally random, and particularly on the shape of
the Pareto front itself, as at each stage it sets the limits for
the next stages.

Nevertheless, the effect that certain parts of the Pareto
front are unreachable for the optimization process can be
both helpful and problematic, dependent on the optimization
goal. If a diverse spread of solutions is wanted, it is more
feasible to choose a less limiting origin solution.

On the other hand, fitness bounds and the accompanying
reduction in the target space can even increase the degree
to which the optimization algorithm can explore the search
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(a) (b)

Fig. 12 Selected solution and the accompanying boundaries limit the discovery of certain regions of the Pareto front in subsequent stages. The
degree of limitation depends on location and shape of the Pareto fronts. a No limitation, b limiting selection

space. In this case, the optimization benefits from the strong
regulation, because the search is more concentrated on a
smaller region, resulting in effects as shown in Fig. 11 where
the incremental evolution achieves amore fit, but less diverse,
Pareto front than the initial stage of the decremental strat-
egy.

6 Conclusion

Optimization of a multi-stage MCLP based on a genetic
algorithm using two different construction strategies for a
successive multi-stage charging station placement is com-
pared and evaluated, for both the single and multi-objective
case. The incremental strategy begins with a small initial
stage and builds iteratively upon this partial solution at each
stage. The decremental strategy starts with an optimized
final stage, with a subset of the former placements com-
prising each smaller stage. The strategies are compared in
different scenarios with different numbers of intermediate
stages and evaluation focuses. The initial solutions of both
strategies are based on the same genetic algorithm used for
the independent placement strategy. For the multi-objective
case, this iterative approach must be adapted, as there are
multiple non-dominated solutions produced at every stage,
and solutions to act as bounds for successive stages must be
selected.

For both the single and the multi-objective algorithms, it
is clear that the decomposition of the placement problem into
smaller stages fosters the evolution of an optimized solution.
It can be concluded that the GA profits from small, suc-
cessive optimization goals based on a fixed partial solution.

This behavior, especially in the application of GA on single-
objective MCLP, results from high fitness locations being
covered first in every case, regardless of the total number of
charging stations to be placed. These locations can yield a
high share on the overall fitness with a single charging sta-
tion placement, which aligns with our goal to place highest
fitness stations as early as possible.

In later stages, the incremental strategy placed additional
charging stations with the highest fitness, i.e., concentrating
on high value regions first and later including missing parts
of the target region. This is comparable to a greedy solution,
which always places the charging station with the highest
fitness gain next. The danger that an incremental strategy
would settle into a local optimum at an early stage, and not
achieve the same coverage as an unrestricted approach, failed
to materialize in our case.

Furthermore, the maximum reachable fitness of the decre-
mental strategy is constrained by the result of the independent
strategy for the same stage, as the decremental strategyworks
on a discrete set of locations which are optimized for a larger
stage. It can only achieve an optimal selection of the most
valuable subset of these placements, but it lacks the chance
to improve the result as it can not move any stations during
optimization. In practice, this is only acceptable if it can be
assured that the final result—i.e., the initial stage—is near
the optimum and the project constraints focus more on the
final than the intermediate results.

Within the multi-objective MCLP, the observed behav-
ior is connected to the selection criterion, which determines
which solution in the Pareto front will be used as a base.

Depending on the upper and lower bounds of the chosen
solution, the Pareto front cannot evolve to solutions outside
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these bounds, but must remain in the bounded region of the
fitness space.

The choice for a selection criterion can hinder the evolu-
tion process as important parts of the target space become
unreachable, though it also allows for the exclusion of
unimportant parts of the target space, assisting the optimiza-
tion process. Adjustment of this selection criterion allows
for tuning of the placement strategy’s development over
time.

We recommend an incremental strategy for charging sta-
tion placement, not only for a successive, multi-stage place-
ment strategy, but—especially for large-scale problems—to
exploit the problem decomposition effect, and even to con-
sider it as an alternative to an independent strategy for
single-stage planning. If the problem has to handle multi-
ple objectives, close attention should be paid to the choice
of selection criterion. If computational constraints allow,
choose multiple solutions at each stage and branch the opti-
mization at these points. The selection criterion can be
considered to be a possibility to control the strategy over
time. Especially in complex decision processes, the criterion
can be used to adjust a placement roll out when politi-
cal, economical or environmental conditions change. The
developed strategy is therefore more flexible and easier to
implement.

The use of a decremental strategy did not lead to useful
results. If it can start fromanoptimal initial solution and if it is
acceptable for the intermediate results to be less than optimal
it has the advantage of being less computationally expensive
than the incremental strategy. However, this will usually not
be the case for charging station placement strategies, except
when a final solution is provided and the main task is to
deconstruct it into smaller stages.

While this paper is based on a representative part of a real-
world problem, we must consider how the strategies scale
to larger problems, especially when additional intermediate
stages are used to foster the problem decomposition effect. A
comparison of this incremental evolutionary approach with
a pure greedy solution should be considered, as the observed
characteristics of the former show similarities with the lat-
ter. We solve a real-world problem where it is necessary
to take into account further objectives, such as the charg-
ing station’s distance to the power grid, grid capacity and
demanded charging duration. A metric for spatial distribu-
tion to achievemore charging station coverage in certain rural
areas or clustering of stations in high traffic regions should
be considered.

For themulti-objective optimization problem, the effect of
different selection criteria, especially when also considering
further objectives, is an interesting issue. The selection cri-
terion highly influences future stage diversity and strategic
flexibility. A self-adjusting strategic solution to the MCLP
problem would be very helpful in decision processes.

The application of other meta-heuristics than GAs, e.g.,
particle swarmoptimization,would have to include themulti-
stage aspect of the problem as well.

In this work, we presented approaches to the optimization
of the multi-objective maximal covering location problem.
While the task required the consideration of problems of the-
oretical interest, it should not be forgotten that the parameters
and constraints of the problem were not contrived, but dic-
tated by the demands of the real world. While the geography
of our problemmay be unique, the requirements, constraints,
and benefits are not. Efficient placement of charging stations
where they are most needed will ensure their use, and the
success of efforts to move toward more sustainable modes
of transportation will rely on rates of adoption of new tech-
nologies as much as on the development of the technologies
themselves.
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