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ABSTRACT
Testing in Continuous Integration (CI) involves test case prioriti-
zation, selection, and execution at each cycle. Selecting the most
promising test cases to detect bugs is hard if there are uncertainties
on the impact of committed code changes or, if traceability links
between code and tests are not available. This paper introduces
Retecs, a new method for automatically learning test case selection
and prioritization in CI with the goal to minimize the round-trip
time between code commits and developer feedback on failed test
cases. The Retecs method uses reinforcement learning to select
and prioritize test cases according to their duration, previous last
execution and failure history. In a constantly changing environ-
ment, where new test cases are created and obsolete test cases are
deleted, the Retecs method learns to prioritize error-prone test
cases higher under guidance of a reward function and by observing
previous CI cycles. By applying Retecs on data extracted from
three industrial case studies, we show for the first time that rein-
forcement learning enables fruitful automatic adaptive test case
selection and prioritization in CI and regression testing.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; Software testing and debugging;
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Regression testing, Test case prioritization, Test case selection, Re-
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1 INTRODUCTION
Context. Continuous Integration (CI) is a cost-effective software
development practice commonly used in industry [10, 13] where
developers frequently integrate their work. It involves several tasks,
including version control, software configuration management,
automatic build and regression testing of new software release
candidates. Automatic regression testing is a crucial stepwhich aims
at detecting defects as early as possible in the process by selecting
and executing available and relevant test cases. CI is seen as an
essential method for improving software quality while keeping
verification costs at a low level [24, 34].

Unlike usual testing methods, testing in CI requires tight control
over the selection and prioritization of the most promising test
cases. By most promising, we mean test cases that are prone to
detect failures early in the process. Admittedly, selecting test cases
which execute the most recent code changes is a good strategy in
CI, such as, for example in coverage-based test case prioritization
[9]. However, traceability links between code and test cases are not
always available or easily accessible when test cases correspond to
system tests. In system testing for example, test cases are designed
for testing the overall system instead of simple units of code and
instrumenting the system for code coverage monitoring is not easy.
In that case, test case selection and prioritization has to be handled
differently and using historical data about failures and successes of
test cases has been proposed as an alternative [16]. Based on the
hypothesis that test cases having failed in the past are more likely
to fail in the future, history-based test case prioritization schedules
these test cases first in new CI cycles [19]. Testing in CI also means
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to control the time required to execute a complete cycle. As the
durations of test cases strongly vary, not all tests can be executed
and test case selection is required.

Despite algorithms have been proposed recently [19, 23], we
argue that these two aspects of CI testing, namely test case selection
and history-based prioritization, can hardly be solved by using only
non-adaptive methods. First, the time allocated to test case selection
and prioritization in CI is limited as each step of the process is given
a contract of time. So, time-effective methods shall be privileged
over costly and complex prioritization algorithms. Second, history-
based prioritization is not well adapted to changes in the execution
environment. More precisely, it is frequent to see some test cases
being removed from one cycle to another because they test an
obsolete feature of the system. At the same time, new test cases
are introduced to test new or changed features. Additionally, some
test cases are more crucial in certain periods of time, because they
test features on which customers focus the most, and then they
loose their prevalence because the testing focus has changed. In
brief, non-adaptive methods may not be able to spot changes in
the importance of some test cases over others because they apply
systematic prioritization algorithms.
Reinforcement Learning. In order to tame these problems, we
propose a new lightweight test case selection and prioritization ap-
proach in CI based on reinforcement learning and neural networks.
Reinforcement learning is well-tuned to design an adaptive method
capable to learn from its experience of the execution environment.
By adaptive, it is meant, that our method can progressively improve
its efficiency from observations of the effects its actions have. By
using a neural network which works on both the selected test cases
and the order in which they are executed, the method tends to
select and prioritize test cases which have been successfully used
to detect faults in previous CI cycles, and to order them so that the
most promising ones are executed first.

Unlike other prioritization algorithms, our method is able to
adapt to situations where test cases are added to or deleted from a
general repository. It can also adapt to situations where the testing
priorities change because of different focus or execution platforms,
indicated by changing failure indications. Finally, as the method
is designed to run in a CI cycle, the time it requires is negligible,
because it does not need to perform computationally intensive
operations during prioritization. It does not mine in detail code-
based repositories or change-logs history to compute a new test case
schedule. Instead it facilitates knowledge about test cases which
have been the most capable to detect failures in a small sequence
of previous CI cycles. This knowledge to make decisions is updated
only after tests are executed from feedback provided by a reward
function, the only component in the method initially embedding
domain knowledge.
The contributions of this paper are threefold:

(1) This paper shows that history-based test case prioritiza-
tion and selection can be approached as a reinforcement
learning problem. By modeling the problem with notions
such as states, actions, agents, policy, and reward functions,
we demonstrate, as a first contribution, that RL is suitable
to automatically prioritize and select test cases;

(2) Implementing an online RL method, without any previous
training phase, into a Continuous Integration process is
shown to be effective to learn how to prioritize test cases.
According to our knowledge, this is the first time that RL
is applied to test case prioritization and compared with
other simple deterministic and random approaches. Com-
paring two distinct representations (i.e., tableau and neural
networks) and three distinct reward functions, our exper-
imental results show that, without any prior knowledge
and without any model of the environment, the RL ap-
proach is able to learn how to prioritize test cases better
than other approaches. Remarkably, the number of cycles
required to improve on other methods corresponds to less
than 2-months of data, if there is only one CI cycle per day;

(3) Our experimental results have been computed on industrial
data gathered over one year of Continuous Integration. By
applying our RL method on this data, we actually show
that the method is deployable in industrial settings. This is
the third contribution of this paper.

Paper Outline. The rest of the paper is organized as follows: Sec-
tion 2 provides notations and definitions. It also includes a formal-
ization of the problem addressed in our work. Section 3 presents
our Retecs approach for test case prioritization and selection based
on reinforcement learning. It also introduces basic concepts such
as artificial neural network, agent, policy and reward functions.
Section 4 presents our experimental evaluation of the Retecs on
industrial data sets, while Section 5 discusses related work. Finally,
Section 6 summarizes and concludes the paper.

2 FORMAL DEFINITIONS
This section introduces necessary notations used in the rest of the
paper and presents the addressed problem in a formal way.

2.1 Notations and Definitions
Let Ti be a set of test cases {t1, t2, . . . , tN } at a CI cycle i . Note
that this set can evolve from one cycle to another. Some of these
test cases are selected and ordered for execution in a test schedule
called TSi (TSi ⊆ Ti ). For evaluation purposes, we define further
TStotal

i as being the ordered sequence of all test cases (TStotal
i =

Ti ) as if all test cases are scheduled for execution regardless of
any time limit. Note that Ti is an unordered set, while TSi and
TStotal

i are ordered sequences. Following up on this idea, we
define a ranking function over the test cases: rank : TSi → N
where rank(t) is the position of t within TSi .

In TSi , each test case t has a verdict t .verdicti and a duration
t .durationi . Note that these values are only available after executing
the test case and that they depend on the cycle in which the test case
has been executed. For the sake of simplicity, the verdict is either 1 if
the test case has passed, or 0 if it has failed or has not been executed
in cycle i , i.e. it is not included in TSi . The subset of all failed test
cases in TSi is noted TS

f ail
i = {t ∈ TSi s.t. t .verdicti = 0}. The

failure of an executed test case can be due to one or several actual
faults in the system under test, and conversely a single fault can be
responsible of multiple failed test cases. For the remainder of this
paper, we will focus only on failed test cases (and not actual faults
of the system) as the link between actual faults and executed test
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cases is not explicit in the available data of our context. Whereas
t .durationi is the actual duration and only available after executing
the test case, t .duration is a simple over-approximation of previous
durations and can be used for planning purposes.

Finally, we define qi (t) as a performance estimation of a test
case in the given cycle i . By performance, we mean an estimate
of its efficiency to detect failures. The performance Qi of a test
suite {t1, . . . , tn } can be estimated with any cumulative function
(e.g., sum, max, average, etc.) over qi (t1), . . .qi (tn ), e.g.,Qi (TSi ) =

1
|TSi |

∑
t ∈TSi q(t).

2.2 Problem Formulation
The goal of any test case prioritization algorithm is to find an op-
timal ordered sequence of test cases that reveal failures as early
as possible in the regression testing process. Formally speaking,
following and adapting the notations proposed by Rothermel et al.
in [32]: Test Case Prioritization Problem (TCP)
Let TSi be a test suite, and PT be the set of all possible permuta-
tions of TSi , let Qi be the performance, then TCP aims at finding
TS′

i a permutation of TSi , such that Qi (TS′
i ) is maximized.

Said otherwise, TCP aims at finding TS′
i such that ∀ TSi ∈ PT :

Qi (TS′
i ) ≥ Qi (TSi ) . Although it is fundamental, this problem

formulation does not capture the notion of a time limit for exe-
cuting the test suite. Time-limited Test Case Prioritization extends
the TCP problem by limiting the available time for execution. As a
consequence, not all the test cases may be executed when there is a
time-contract. Note that other resources (than time) can constrain
the test case selection process, too. However, the formulation given
below can be adapted without any loss of generality.

Time-limited Test Case Prioritization Problem (TTCP)
Let M be the maximum time available for test suite execution,
then TTCP aims at finding a test suite TSi , such that Qi (TSi )

is maximized and the total duration of execution of TSi is less
than M . Said otherwise, TTCP aims at finding TSi such that
∀ TS′

i ∈ PT : Qi (TSi ) ≥ Qi (TS′
i ) ∧

∑
tk ∈TS′i tk .duration ≤

M ∧
∑
tk ∈TSi tk .duration ≤ M .

Still the problem formulation given above does not take into
account the history of test suite execution. In case the links between
code changes and test cases are not available as discussed in the
introduction, history-based test case prioritization can be used.
The final problem formulation given below corresponds to the
problem addressed in this paper and for which a solution based on
reinforcement learning is proposed. In a CI process, TTCP has to
be solved in every cycle, but under the additional availability of
historical information as a basis for test case prioritization.Adaptive
Test Case Selection Problem (ATCS)
Let TS1, . . . ,TSi−1 be a sequence of previously executed test
suites, then the Adaptive Test Case Selection Problem aims at finding
TSi , so Qi (TSi ) is maximized and

∑
t ∈TSi t .duration ≤ M .

We see that ATCS is an optimization problem which gathers
the idea of time-constrained test case prioritization, selection and
performance evaluation, without requesting more information than
previous test execution results in CI.

Agent

Environment:

CI Cycle

Actions: 

Prioritized

Test Cases
TS

i

Ti

reward
ri

ri+1

Ti+1

States:

Test Suite

Figure 1: Interaction of Agent and Environment (adapted
from [36, Fig 3.1])

3 THE RETECS METHOD
This section introduces our approach to the ATCS problem using
reinforcement learning (RL), called Reinforced Test Case Selection
(Retecs). It starts by describing how RL is applied to test case
prioritization and selection (section 3.1), then discusses test case
scheduling in one CI cycle (section 3.2). Finally, integration of the
method within a CI process is presented (section 3.3).

3.1 Reinforcement Learning for Test Case
Prioritization

In this section, we describe the main elements of reinforcement
learning in the context of test case prioritization and selection. If
necessary, a more in-depth introduction can be found in [36]. We
apply RL as a model-free and online learning method for the ATCS
problem. Each test case is prioritized individually and after all test
cases have been prioritized, a schedule is created from the most
important test cases, and afterwards executed and evaluated.

Model-free means the method has no initial concept of the envi-
ronment’s dynamics and how its actions affect it. This is appropriate
for test case prioritization and selection, as there is no strict model
behind the existence of failures within the software system and
their detection.

Online learning describes a method constantly learning during
its runtime. This is also appropriate for software testing, where
indicators for failing test cases can change over time according to
the focus of development or variations in the test suite. Therefore
it is necessary to continuously adapt the prioritization method for
test cases.

In RL, an agent interacts with its environment by perceiving
its state and selecting an appropriate action, either from a learned
policy or by random exploration of possible actions. As a result,
the agent receives feedback in terms of rewards, which rate the
performance of its previous action.

Figure 1 illustrates the links between RL and test case prioritiza-
tion. A state represents a single test case’s metadata, consisting of
the test case’s approximated duration, the time it was last executed
and previous test execution results. As an action the test case’s
priority for the current CI cycle is returned. After all test cases in a
test suite are prioritized, the prioritized test suite is scheduled, in-
cluding a selection of the most important test cases, and submitted
for execution. With the test execution results, i.e., the test verdicts,
a reward is calculated and fed back to the agent. From this reward,
the agent adapts its experience and policy for future actions. In case
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of positive rewards previous behavior is encouraged, i.e. reinforced,
while in case of negative rewards it is discouraged.

Test verdicts of previous executions have shown to be useful
to reveal future failures [16]. This raises the question how long
the history of test verdicts should be for a reliable indication. In
general, a long history provides more information and allows better
knowledge of the failure distribution of the system under test, but
it also requires processing more data which might have become
irrelevant with previous upgrades of the system as the previously
error-prone feature got more stable. To consider this, the agent
has to learn how to time-weight previous test verdicts, which adds
further complexity to the learning process. How the history length
affects the performance of our method, is experimentally evaluated
in Section 4.2.2.

Of further importance for RL applications are the agent’s policy,
i.e. the way it decides on actions, the memory representation, i.e.
how it stores its experience and policy, and the reward function to
provide feedback for adaptation and policy improvement.

In the following, we will discuss these components and their
relevance for Retecs.

3.1.1 Reward Functions. Within the ATCS problem, a good test
schedule is defined by the goals of test case selection and prior-
itization. It contains those test cases which lead to detection of
failures and executes them early to minimize feedback time. The
reward function should reflect these goals and thereby domain
knowledge to steer the agent’s behavior [20]. Referring to the defi-
nition of ATCS, the reward function implements Qi and evaluates
the performance of a test schedule.

Ideally, feedback should be based on common metrics used in
test case prioritization and selection, e.g. NAPFD (presented in
section 4.1). However, these metrics require knowledge about the
total number of faults in the system under test or full information on
test case verdicts, even for non-executed test cases. In a CI setting,
test case verdicts exist only for executed test cases and information
about missed failures is not available. It is impossible to teach the
RL agent about test cases which should have been included, but
only to reinforce actions having shown positive effects. Therefore,
in Retecs, rewards are either zero or positive, because we cannot
automatically detect negative behavior.

In order to teach the agent about both the goal of a task and the
way to approach this goal the reward, two types of reward functions
can be distinguished. Either a single reward value is given for the
whole test schedule, or, more specifically, one reward value per
individual test case. The former rewards the decisions on all test
cases as a group, but the agent does not receive feedback how
helpful each particular test case was to detect failures. The latter
resolves this issue by providing more specific feedback, but risks to
neglect the prioritization strategy of different priorities for different
test cases for the complete schedule as a whole.

Throughout the presentation and evaluation of this paper, we
will consider three reward functions.

Definition 3.1. Failure Count Reward

reward
f ail
i (t) = |TS

f ail
i | (∀ t ∈ Ti ) (1)

In the first reward function (1) all test cases, both scheduled
and unscheduled, receive the number of failed test cases in the
schedule as a reward. It is a basic, but intuitive reward function
directly rewarding the RL agent on the goal of maximizing the
number of failed test cases. The reward function acknowledges
the prioritized test suite in total, including positive feedback on
low priorities for test cases regarded as unimportant. This risks
encouraging low priorities for test cases which would have failed if
executed, and could encourage undesired behavior, but at the same
time it strengthens the influence all priorities in the test suite have.

Definition 3.2. Test Case Failure Reward

reward
tcf ail
i (t) =

{
1 − t .verdicti if t ∈ TSi

0 otherwise
(2)

The second reward function (2) returns the test case’s verdict as
each test case’s individual reward. Scheduling failing test cases is
intended and therefore reinforced. If a test case passed, no specific
reward is given as including it neither improved nor reduced the
schedule’s quality according to available information. Still, the order
of test cases is not explicitly included in the reward. It is implicitly
included by encouraging the agent to focus on failing test cases
and prioritizing them higher. For the proposed scheduling method
(section 3.2) this automatically leads to an earlier execution.

Definition 3.3. Time-ranked Reward

reward t ime
i (t) = |TS

f ail
i | − t .verdicti ×

∑
tk ∈TS

f ail
i ∧

rank (t )<rank (tk )

1 (3)

The third reward function (3) explicitly includes the order of
test cases and rewards each test case based on its rank in the test
schedule and whether it failed. As a good schedule executes failing
test cases early, every passed test case reduces the schedule’s quality
if it precedes a failing test case. Each test cases is rewarded by the
total number of failed test cases, for failed test cases it is the same
as reward function (1). For passed test cases, the reward is further
decreased by the number of failed test cases ranked after the passed
test case to penalize scheduling passing test cases early.

3.1.2 Action Selection: Prioritizing Test Cases. Action selection
describes how the RL agent processes a test case and decides on
a priority for it by using the policy. The policy is a function from
the set of states, i.e., test cases in our context, to the set of actions,
i.e., how important each test case is for the current schedule, and
describes how the agent interacts with its execution environment.
The policy function is an approximation of the optimal policy. In
the beginning it is a loose approximation, but over time and by
gathering experience it adapts towards an optimal policy.

The agent selects those actions from the policy which were most
rewarding before. It relies on its learned experience on good actions
for the current state. Because the agent initially has no concept
of its actions’ effects, it explores the environment by choosing
random actions and observing received rewards on these actions.
How often random actions are selected instead of consulting the
policy, is controlled by the exploration rate, a parameter which
usually decreases over time. In the beginning of the process, a
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high exploration rate encourages experimenting, whereas at a later
time exploration is reduced and the agent more strongly relies on
its learned policy. Still, exploration is not disabled, because the
agent interacts in a dynamic environment, where the effects of
certain actions change and where it is necessary to continuously
adapt the policy. Action selection and the effect of exploration are
also influenced by non-stationary rewards, meaning that the same
action for the same test case does not always yield the same reward.
Test cases which are likely to fail, based on previous experiences,
do not fail when the software is bug-free, although their failure
would be expected. The existence of non-stationary rewards has
motivated our selection of an online-learning approach, which
enables continuous adaptation and should tolerate their occurence.

3.1.3 Memory Representation. As noted above, the policy is an
approximated function from a state (a test case) to an action (a
priority). There exist a wide variety of function approximators in
literature, but for our context we focus on two main approximators.

The first function approximator is the tableau representation [36].
It consists of two tables to track seen states and selected actions. In
one table it is counted how often each distinct action was chosen
per state. The other table stores the average received reward for
these actions. The policy is then to choose that action with highest
expected reward for the current state, which can be directly read
from the table. When receiving rewards, cells for each rewarded
combination of states and actions are updated by increasing the
counter and calculating the running average of received rewards.

As an exploration method to select random actions, ϵ-greedy
exploration is used. With probability (1 − ϵ) the most promising
action according to the policy is selected, otherwise a random action
is selected for exploration.

Albeit a straightforward representation, the tableau also restricts
the agent. States and actions have to be discrete sets of limited size
as each state/action pair is stored separately. Furthermore, with
many possible states and actions, the policy approximation takes
longer to converge towards an optimal policy as more experiences
are necessary for the training. However, for the presented problem
and its number of possible states a tableau is still applicable and
considered for evaluation.

Overcoming the limitations of the tableau, artificial neural net-
works (ANN) are commonly used function approximators [37].
ANNs can approximate functions with continuous states and ac-
tions and are easier to scale to larger state spaces. The downside of
using ANNs are more complex configuration and higher training ef-
forts than for the tableau. In the context of Retecs, an ANN receives
a state as input to the network and outputs a single continuous
action, which directly resembles the test case’s priority.

Exploration is different when using ANNs, too. Because a con-
tinuous action is used, ϵ-greedy exploration is not possible. Instead,
exploration is achieved by adding a random value drawn from a
Gaussian distribution to the policy’s suggested action. The variance
of the distribution is given by the exploration rate and a higher rate
allows for higher deviations from the policy’s actions. The lower
the exploration rate is, the closer the action is to the learned policy.

Whereas the agent with tableau representation processes each
experience and reward once, an ANN-based agent can be trained

differently. Previously encountered experiences are stored and re-
visited during training phase to achieve repeated learning impulses,
which is called experience replay [18]. When rewards are received,
each experience, consisting of a test case, action and reward, is
stored in a separate replay memory with limited capacity. If the
replay memory capacity is reached, oldest experiences get replaced
first. During training, a batch of experiences is randomly sampled
from this memory and used for training the ANN via backpropaga-
tion with stochastic gradient descent [44].

3.2 Scheduling
Test cases are scheduled under consideration of their priority, their
duration and a time limit. The scheduling method is a modular
aspect within Retecs and can be selected depending on the envi-
ronment, e.g. considering execution constraints or scheduling onto
multiple test agents. As an only requirement it has to maximize the
total priority within the schedule. For example, in an environment
with only a single test agent and no further constraints, test cases
can be selected by descending priority (ties broken randomly) until
the time limit is reached.

3.3 Integration within a CI Process
In a typical CI process (as shown in Figure 2), a set of test cases is
first prioritized and based on the prioritization a subset of test cases
is selected and scheduled onto the testing system(s) for execution.

The Retecs method fits into this scheme by providing the Prior-
itization and Selection & Scheduling steps. It extends the CI process
by requiring an additional feedback channel to receive test results
after each cycle, which is the same or part of the information also
provided as developer feedback.

4 EXPERIMENTAL EVALUATION
In this section we present an experimental evaluation of the Retecs
method. During the first part, an overview of evaluation metrics
(section 4.1) is given before the experimental setup is introduced
(section 4.2). In section 4.3 we present and discuss the experimental
results. A discussion of possible threats (section 4.4) and extensions
(section 4.5) to our work close the evaluation.

Within the evaluation of the Retecs method we investigate if
it can be successfully applied towards the ATCS problem. Initially,
before evaluating the method on our research questions, we explore
how different parameter choices affect the performance of our
method.

RQ1 Is the Retecs method effective to prioritize and select test
cases? We evaluate combinations of memory representa-
tions and reward functions on three industrial data sets.

RQ2 Can the lightweight and model-free Retecs method priori-
tize test cases comparable to deterministic, domain-specific
methods? We compare Retecs against three comparison
methods, one random prioritization strategy and to basic
deterministic methods.

4.1 Evaluation Metric
In order to compare the performance of different methods, eval-
uation metrics are required as a common performance indicator.
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Test Cases Prioritization Prioritized
Test Cases

Selection &
Scheduling Test Schedule Test Execution

Developer
Feedback

Evaluation
Reinforcement
Learning Policy

Figure 2: Testing in CI process: RETECS uses test execution results for learning test case prioritization (solid boxes: Included
in RETECS, dashed boxes: Interfaces to the CI environment)

Following, we introduce Normalized Average Percentage of Faults
Detected as the applied evaluation metric.

Definition 4.1. Normalized APFD

NAPFD(TSi ) =p −

∑
t ∈TS

f ail
i

rank(t)

|TS
f ail
i | × |TSi |

+
p

2 × |TSi |

with p =
|TS

f ail
i |

|TS
total,f ail
i |

Average Percentage of Faults Detected (APFD) was introduced
in [31] to measure the effectiveness of test case prioritization tech-
niques. It measures the quality via the ranks of failure-detecting test
cases in the test execution order. As it assumes all detectable faults
get detected, APFD is designed for test case prioritization tasks
without selecting a subset of test cases. Normalized APFD (NAPFD)
[28] is an extension of APFD to include the ratio between detected
and detectable failures within the test suite, and is thereby suited
for test case selection tasks when not all test cases are executed and
failures can be undetected. If all faults are detected (p = 1), NAPFD
is equal to the original APFD formulation.

4.2 Experimental Setup
Two RL agents are evaluated in the experiments. First uses a tableau
representation of discrete states and a fixed number of actions,
named Tableau-based agent. And a second, Network-based agent
uses an artificial neural network as memory representation for
continuous states and a continuous action. The reward function of
each agent is not fixed, but varied throughout the experiments.

Test cases are scheduled on a single test agent in descending
order of priority until the time limit is reached.

To evaluate the efficiency of the Retecs method, we compare it
to three basic test case prioritization methods. First is random test
case prioritization as a baseline method, referred to as Random. The
other two methods are deterministic. As a second method, named
Sorting, test cases are sorted by their recent verdicts with recently
failed test cases having higher priority. For the third comparison
method, labeled as Weighting, the priority is calculated by a sum
of the test case’s features as they are used as an input to the RL
agent. Weighting considers the same information as Retecs and

corresponds to a weighted sum with equal weights and is thereby
a naive version of Retecs without adaptation. Although the three
comparison methods are basic approaches to test case prioritization,
they utilize the same information as provided to our method, and
are likely to be encountered in industrial environments.

Due to the online learning properties and the dependence on
previous test suite results, evaluation is done by comparing the
NAPFD metrics for all subsequent CI cycles of a data set over time.
To account for the influence of randomness within the experimental
evaluation, all experiments are repeated 30 times and reported
results show the mean, if not stated otherwise.

Retecs1 is implemented in Python [38] using scikit-learn’s im-
plementation of artificial neural networks [26].

4.2.1 Industrial Data Sets. To determine real-world applicability,
industrial data sets from ABB Robotics Norway2, Paint Control and
IOF/ROL, for testing complex industrial robots, and Google Shared
Dataset of Test Suite Results (GSDTSR) [11] are used.3 These data
sets consist of historical information about test executions and their
verdicts and each contain data for over 300 CI cycles.

Table 1 gives an overview of the data sets’ structure. Both ABB
data sets are split into daily intervals, whereas GSDTSR is split
into hourly intervals as it originally provides log data of 16 days,
which is too short for our evaluation. Still, the average test suite
size per CI cycle in GSDTSR exceeds that in the ABB data sets while
having fewer failed test executions. For applying Retecs constant
durations between each CI cycle are not required.

For the CI cycle’s time limit, which is not present in the data sets,
a fixed percentage of 50% of the required time is used. A relative
time limit allows better comparison of results between data sets
and keeps the difficulty at each CI cycle on a comparable level. How
this percentage affects the results is evaluated in section 4.3.3.

4.2.2 Parameter Selection. A couple of parameters allow adjust-
ing themethod towards specific environments. For the experimental
evaluation the same set of parameters is used in all experiments, if
not stated otherwise. These parameters are based on values from
literature and experimental exploration.

Table 2 gives an overview of the chosen parameters. The number
of actions for the Tableau-based agent is set to 25. Preliminary tests
showed a larger number of actions did not substantially increase

1Implementation available at https://bitbucket.org/helges/retecs
2Website: http://new.abb.com/products/robotics
3Data Sets available at https://bitbucket.org/helges/atcs-data

17

https://bitbucket.org/helges/retecs
http://new.abb.com/products/robotics
https://bitbucket.org/helges/atcs-data


Reinforcement Learning for Automatic Test Case Prioritization and Selection
in Continuous Integration ISSTA’17, July 2017, Santa Barbara, CA, USA

Table 1: Industrial Data SetsOverview:All columns show the
total amount of data in the data set

Data Set Test Cases CI Cycles Verdicts Failed

Paint Control 114 312 25,594 19.36%
IOF/ROL 2,086 320 30,319 28.43%
GSDTSR 5,555 336 1,260,617 0.25%

Table 2: Parameter Overview

RL Agent Parameter Value

All CI cycle’s time limitM 50% × Ti .duration
History Length 4

Tableau Number of Actions 25
Exploration Rate ϵ 0.2

Network Hidden Nodes 12
Replay Memory 10000
Replay Batch Size 1000
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Figure 3: Relative performance of different history lengths.
A longer history can reduce the performance due to more
complex information. (Data set: ABB Paint Control)

the performance. Similar tests were conducted for the ANN’s size,
including variations on the number of layers and hidden nodes,
but a network larger than a single layer with 12 nodes did not
significantly improve performance.

The effect of different history lengths is evaluated experimen-
tally on the Paint Control data set. As Figure 3 shows, does a longer
history not necessarily correspond to better performance. From
an application perspective we interpret the most recent results to
also be the most relevant results. Many historical failures indicate
a relevant test case better than many passes, but individual consid-
eration of each of these results on their own is unlikely to lead to
better conclusions of future verdicts. From a technical perspective,
this is supported by the fact, that a longer history increases the
state space of possible test case representations. A larger state space
is in both memory representations related to a higher complexity
and requires generally more data to adapt, because the agent has
to learn to handle earlier execution results differently than more
recent ones, for example by weighting or aggregating them.

4.3 Results
4.3.1 RQ1: Learning Process & Effectiveness. Figure 4 shows the

performance of Tableau- and Network-based agents with different
reward functions on three industrial data sets. Each column shows
results for one data set, each row for a particular reward function.

It is visible that the combination of memory representation and
reward function strongly influences the performance. In some cases
it does not support the learning process and the performance stays
at the initial level or even declines. Some combinations enable the
agent to learn which test cases to prioritize higher or lower and to
create meaningful test schedules.

Performance on all data sets is best for the Network-based agent
with the Test Case Failure reward function. It benefits from the
specific feedback for each test case and learns which test cases are
likely to fail. Because the Network-based agent prioritizes test cases
with continuous actions, it adapts more easily than the Tableau-
based agent, where only specific actions are rewarded and rewards
for one action do not influence close other actions.

In all results a similar pattern should be visible. Initially, the agent
has no concept of the environment and cannot identify failing test
cases, leading to a poor performance. After a few cycles it received
enough feedback by the reward function to make better choices and
successively improves. However, this is not true for all combinations
of memory representation and reward function. One example is the
combination of Network-based agent and Test Case Failure reward.
On Paint Control, the performance at early CI cycles is superior to
the Tableau-based agent, but it steadily declines due to misleading
feedback from the reward function.

One general observation are performance fluctuations over time.
These fluctuations are correlated to noise in the industrial data sets,
where failures in the system occur for different reasons and are
hard to predict. For example, in the Paint Control data set between
200 and 250 cycles a performance drop is visible. For these cycles a
larger number of test cases were repeatedly added to the test suite
manually. A large part of these test cases failed, which put additional
difficulty on the task. However, as the test suite was manually
adjusted, from a practical perspective it is arguable whether a fully
automated prioritization technique is feasible during these cycles.

In GSDTSR only few failed test cases occur in comparison to
the high number of successful executions. This makes it harder
for the learning agent to discover a feasible prioritization strategy.
Nevertheless, as the results show, it is possible for the Network-
based agent to create effective schedules in a high number of CI
cycles, albeit with occasional performance drops.

Regarding RQ1, we conclude that it is possible to apply Retecs
on the ATCS problem. In particular, the combination of memory
representation and reward function strongly influences the per-
formance of the agent. We found both Network-based agent and
Test Case Failure Reward, as well as Tableau-based agent with
Time-ranked Reward, to be suitable combinations, with the former
delivering an overall better performance. The Failure Count Reward
function does not support the learning processes of the two agents.
Providing only a single reward value without further distinction is
not helping the agents towards an effective prioritization strategy.
It is better to reward each test case’s priority individually according
to its contribution to the previous schedule.
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Figure 4: Comparison of reward functions andmemory representations: A Network-based agent with Test Case Failure reward
delivers best performance on all three data sets (Black lines indicate trend over time)

4.3.2 RQ2: Comparison to Other Methods. Where the experi-
ments on RQ1 focus on the performances of different component
combinations, is the focus of RQ2 towards comparing the best-
performing Network-based RL agent (with Test Case Failure re-
ward) with other test case prioritization methods. Figure 5 shows
the results of the comparison against the three methods on each of
the three data sets. A comparison is made for every 30 CI cycles on
the difference of the average NAPFD values of each cycle. Positive
differences show better performance by the comparison method, a
negative difference shows better performance by Retecs.

During early CI cycles, the deterministic comparison methods
show mostly better performance. This corresponds to the initial
exploration phase, where Retecs adapts to its environment. After
approximately 60 CI cycles, for Paint Control, it is able to prioritize
with similar or better performance than the comparison methods.
Similar results are visible on the other two data sets, with a longer
adaptation phase but less performance differences on IOF/ROL and
an early comparable performance on GSDTSR.

For IOF/ROL,where the previous evaluation (see Figure 4) showed
lower performance compared to Paint Control, also the comparison

methods are not able to correctly prioritize failing test cases higher,
as the small performance gap indicates.

For GSDTSR, Retecs is performing overall comparable with an
NAPFD difference up to 0.2. Due to the few failures within the
data set, the exploration phase does not impact the performance in
the early cycles as strongly as for the other two data sets. Also, it
appears as if the indicators for failing test cases are not as correlated
to the previous test execution results as they were in the other data
sets, which is visible from the comparatively low performance of
the deterministic methods.

In summary, the results for RQ2 show, that Retecs can, starting
from a model-free memory without initial knowledge about test
case prioritization, in around 60 cycles, which corresponds to two
month for daily intervals, learn to effectively prioritize test cases.
Its performance compares to that of basic deterministic test case
prioritization methods. For CI, this means that Retecs is a promis-
ing method for test case prioritization which adapts to environment
specific indication of system failures.

4.3.3 Internal Evaluation: Schedule Time Influence. In the ex-
perimental setup, the time limit for each CI cycle’s reduced test
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Figure 5: Performance difference between network-based agent and comparison methods: After an initial exploration phase
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Figure 6: Relative performance under different time lim-
its. Shorter scheduling times reduce the information for re-
wards and delay learning. The performance differences for
Network and Tableau also arise from the initial exploration
phase, as shown in Figure 5 (Data set: ABB Paint Control).

schedule is set to 50% of the execution time of the overall test suite
Ti . To see how this choice influences the results and how it affects
the learning process, an additional experiment is conducted with
varying scheduling time ratios.

Figure 6 shows the results on the Paint Control data set. The
NAPFD result is averaged over all CI cycles, which explains the
overall better performance by the comparison methods due to an
initial learning period. As it is expected, performance decreases
with lower time limits for all methods. However, for RL agents a de-
creased scheduling time directly decreases available information for
learning as fewer test cases can be executed and fewer actions can
meaningfully be rewarded, resulting in a slower learning process.

Nevertheless, the decrease in performance is not directly propor-
tional to the decrease in scheduling time, a sign that Retecs learns
at some point how to prioritize test cases even though the amount
of data in previous cycles was limited.

4.4 Threats to Validity
Internal. The first threat to internal validity is the influence of
random decisions on the results. To mitigate the threat, we repeated
our experiments 30 times and report averaged results.

Another threat is related to the existence of faults within our
implementation. We approached this threat by applying established
components, such as scikit-learn, within our software where ap-
propriate. Furthermore, our implementation is available online for
inspection and reproduction of experiments.

Finally, many machine learning algorithms are sensible to their
parameters and a feasible parameter set for one problem environ-
ment might not work for as well for different one. During our
experiments, the initially selected parameters were not changed
for different problems to allow better comparison. In a real-world
setting, those parameters can be adjusted to tune the approach for
the specific environment.
External. Our evaluation is based on data from three industrial
data sets, which is a limitation regarding the wide variety of CI envi-
ronments and failure distributions. One of these data sets is publicly
available, but according to our knowledge it has only been used in
one publication and a different setting [12]. From what we have an-
alyzed, there are no further public data sets available which include
the required data, especially test verdicts over time. This threat
has to be addressed by additional experiments in different settings
once further data is accessible. To improve the data availability, we
publish the other two data sets used in our experiments.
Construct. A threats to construct validity is the assumption, that
each failed test cases indicates a different failure in the system
under test. This is not always true. One test case can fail due to
multiple failures in the system and one failure can lead to multiple
failing test cases. Based on the abstraction level of our method, this
information is not easily available. Nevertheless, our approach tries
to find all failing test cases and thereby indirectly also all detectable
failures. To address the threat, we propose to include failure causes
as input features in future work.

Further regarding the input features, our proposed method uses
only few test case metadata to prioritize test cases and to reason
about their importance for the test schedule. In practical environ-
ments, more information about test cases or the system under test
is available and should be utilized.

We compared our method to baseline approaches, but we have
not considered additional techniques. Although further methods
exist in literature, they do not report results on comparable data
sets or would need adjustment for our CI setting.
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4.5 Extensions
The presented results give perspectives to extensions from two
angles. First perspective is on the technical RL approach. Through a
pre-training phase the agent can internalize test case prioritization
knowledge before actually prioritizing test cases and thereby im-
prove the initial performance. This can be approached by imitation
of other methods [1], e.g. deterministic methods with desirable
behavior, or by using historical data before it is introduced in the CI
process [30]. The second perspective focuses on the domain-specific
approach of test case prioritization and selection. Here, only few
metadata of a test case and its history is facilitated. The number
of features of a test case should be extended to allow better rea-
soning of expected failures, e.g. links between source code changes
and relevant test cases. By including failure causes, scheduling of
redundant test cases can be avoided and the effectiveness improved.

Furthermore, this work used a linear scheduling model, but in
industrial environments more complex environments are encoun-
tered, e.g. multiple systems for test executions or additional con-
straints on test execution besides time limits. Another extension
of this work is therefore to integrate different scheduling methods
under consideration of prioritization information and integration
into the learning process [27].

5 RELATEDWORK
Test case prioritization and selection for regression testing:
Previous work focuses on optimizing regression testing based on
mainly three aspects: cost, coverage, and fault detection, or their
combinations. In [21] authors propose an approach for test case
selection and prioritization using the combination of Integer Linear
Programming (ILP) and greedy methods by optimizing multiple
criteria. Another study investigates coverage-based regression test-
ing [9], using four common prioritization techniques: a test selec-
tion technique, a test suite minimization technique and a hybrid
approach that combines selection and minimization. Similar ap-
proaches have been proposed using search-based algorithms [7, 42],
including swarm optimization [8] and ant colony optimization [22].
Walcott et al. use genetic algorithms for time-aware regression
test suite prioritization for frequent code rebuilding [40]. Simi-
larly, Zhang et al. propose time-aware prioritization using ILP [43].
Strandberg et al. [35] apply a novel prioritization method with
multiple factors in a real-world embedded software and show the
improvement over industry practice. Other regression test selec-
tion techniques have been proposed based on historical test data
[16, 19, 23, 25], code dependencies [14], or information retrieval
[17, 33]. Despite various approaches to test optimization for regres-
sion testing, the challenge of applying most of them in practice
lies in their complexity and the computational overhead typically
required to collect and analyze different test parameters needed
for prioritization, such as age, test coverage, etc. By contrast, our
approach based on RL is a lightweight method, which only uses
historical results and its experience from previous CI cycles. Fur-
thermore, Retecs is adaptive and suited for dynamic environments
with frequent changes in code and testing, and evolving test suites.
Machine learning for software testing: Machine learning al-
gorithms receive increasing attention in the context of software
testing. The work closest to ours is [4], where Busjaeger and Xie

use machine learning and multiple heuristic techniques to priori-
tize test cases in an industrial setting. By combining various data
sources and learning to rank in an agnostic way, this work makes a
strong step into the definition of a general framework to automati-
cally learn to rank test cases. Our approach, only based on RL and
ANN, takes another direction by providing a lightweight learning
method using one source of data, namely test case failure history.
Chen et al. [6] uses semi-supervised clustering for regression test
selection. The downside of such an approach may be higher compu-
tational complexity. Other approaches include active learning for
test classification [3], combining machine learning and program
slicing for regression test case prioritization [41], learning agent-
based test case prioritization [2], or clustering approaches [5]. RL
has been previously used in combination with adaptation-based
programming (ABP) for automated testing of software APIs, where
the combination of RL and ABP successively selects calls to the API
with the goal to increase test coverage, by Groce et al. [15]. Fur-
thermore, Reichstaller et al. [29] apply RL to generate test cases for
risk-based interoperability testing. Based on a model of the system
under test, RL agents are trained to interact in an error-provoking
way, i.e. they are encouraged to exploit possible interactions be-
tween components. Veanes et al. use RL for online formal testing
of communication systems [39]. Based on the idea to see testing as
a two-player game, RL is used to strengthen the tester’s behavior
when system and test cases are modeled as Input-Output Labeled
Transition Systems. While this approach is appealing, Retecs ap-
plies RL for a completely different purpose, namely test case pri-
oritization and selection. Our approach aims at CI environments,
which are characterized by strict time and effort constraints.

6 CONCLUSION
We presented Retecs, a novel lightweight method for test case
prioritization and selection in Continuous Integration, combining
reinforcement learning methods and historical test information.
Retecs is adaptive and learns important indicators for failing test
cases during its runtime by observing test cases, test results, and
its own actions and their effects.

Evaluation results show fast learning and adaptation of Retecs
in three industrial case studies. An effective prioritization strategy
is discovered with a performance comparable to basic deterministic
prioritization methods after an initial learning phase of approxi-
mately 60 CI cycles without previous training on test case prioriti-
zation. Necessary domain knowledge is only reflected in a reward
function to evaluate previous schedules. The method is model-free,
language-agnostic and requires no source code or program access.
It only requires test metadata, namely historical results, durations
and last execution times. However, we expect additional metadata
to enhance the method’s performance.

In our evaluation we compare different variants of RL agents
for the ATCS problem. Agents based on artificial neural networks
have shown to be best performing, especially when trained with
test case-individual reward functions. While we applied only small
networks in this work, with extended available data amounts, an
extension towards larger networks and deep learning techniques
can be a promising path for future research.
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